DOI QR코드

DOI QR Code

Optimization of Capacitance Balance for a Hybrid Supercapacitor Consisted of LiMn2O4/AC as a Positive and AC Negative Electrode

  • Received : 2011.08.31
  • Accepted : 2011.09.29
  • Published : 2011.09.30

Abstract

A hybrid supercapacitor is fabricated using a composite material from $LiMn_2O_4$ (LMO) and activated carbon (AC) as the positive electrode and AC as the negative electrode to form the (LMO + AC)/AC system. Volume ratio (positive : negative) of electrodes is controlled to investigate of the power and energy balance. The (LMO + AC)/AC system shows better performances than the LMO/AC system. Especially, electrochemical impedance spectra, rate charge.discharge and cycle performance testing show that the (LMO + AC)/AC system have an outstanding electrochemical performance at volume ratios of (LMO + AC)/AC = 1 : 1.7 and 1 : 2. Electric double layer capacitor (EDLC) capacitance between AC of the positive electrode and AC of the negative electrode improves power density without loss of capacitance. Stable capacitance is achieved by lowering the positive electrode resistance and balancing the energy and power densities between the positive and negative electrodes by the addition of AC to the positive electrode at high current density.

Keywords

References

  1. R. J. Gummow, A. de Kock and M. M. Thackeray, Solid State Ionics, 69, 59 (1994). https://doi.org/10.1016/0167-2738(94)90450-2
  2. Y. Xia, N. Kumada and M. Yoshio, J. Power Sources, 90, 135 (2000). https://doi.org/10.1016/S0378-7753(00)00395-5
  3. K. W. Chang, Z. Y. Lim, F. Y. Du, Y. L. Yang, C. H. Chang, C. C. Hu and H. P. Lin, Diamond Relat. Mater., 18, 448 (2009). https://doi.org/10.1016/j.diamond.2008.10.003
  4. T. Morimoto, K. Hiratsuka, Y. Sanada and K. Kurihara, J. Power Sources, 60, 239 (1996).
  5. H. Nakagawa, A. Shudo and K. Miura, J. Electrochem Soc., 147, 38 (2000). https://doi.org/10.1149/1.1393154
  6. G. Glenn and Amatueei, J. Electrochem. Soc., 148, A930 (2001). https://doi.org/10.1149/1.1383553
  7. R. Kotz and M. Carlen, Electrochim. Acta., 45, 2483 (2000). https://doi.org/10.1016/S0013-4686(00)00354-6
  8. X. Hu, Z. Deng, J. Suo and Z. Pan, J. Power Sources, 187, 635 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.033
  9. J. Li AND F. Gao, J. Power Sources, 194, 1184 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.017
  10. S. Ishimoto, Y. Asakawa, M. Shinya and K. Naoi, J. Electrochem Soc., 156, A571 (2009).
  11. Z. R. Zhang, H. S. Liu, Z. L. Gong and Y. Yang, J. Power Sources, 129, 101 (2004). https://doi.org/10.1016/j.jpowsour.2003.11.015

Cited by

  1. Asymmetric supercapacitor based on VS2 nanosheets and activated carbon materials vol.6, pp.45, 2016, https://doi.org/10.1039/C5RA27155J
  2. Synthesis and Electrochemical Characteristics of Spherical Li4Ti5O12/CNT Composite Materials for Hybrid Capacitors vol.6, pp.2, 2015, https://doi.org/10.5229/JECST.2015.6.2.59
  3. Achieving electrochemical capacitor functionality from nanoscale LiMn2O4 coatings on 3-D carbon nanoarchitectures vol.1, pp.7, 2013, https://doi.org/10.1039/c2ta00937d