• Title/Summary/Keyword: Current-balancing

Search Result 271, Processing Time 0.024 seconds

Multi-Output LED Driver Integrated with 3-Switch Converter and Passive Current Balance for Portable Applications

  • Song, Sen;Ni, Kai;Chen, Guipeng;Hu, Yihua;Yu, Dongsheng
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.58-67
    • /
    • 2019
  • This study presents a new portable eight-output light emitting diode (LED) driver. The eight output-channels are divided into two equal groups, and their output powers can be controlled individually by three active switches. In addition, a simple capacitor-based passive current balancing circuit (CBC) is employed in each port to guarantee that the currents of the four LEDs are the same. When compared with the conventionally used separate two-output isolated converters, the proposed one uses one less active switch. Moreover, zero-voltage-switching (ZVS) is achieved, which improves the power efficiency of the driver. Finally, a highly compact prototype is built, which can reach an efficiency of 94.6%.

A Dynamical Load Balancing Method for Data Streaming and User Request in WebRTC Environment (WebRTC 환경에 데이터 스트리밍 및 사용자 요청에 따른 동적로드 밸런싱 방법)

  • Ma, Linh Van;Park, Sanghyun;Jang, Jong-hyun;Park, Jaehyung;Kim, Jinsul
    • Journal of Digital Contents Society
    • /
    • v.17 no.6
    • /
    • pp.581-592
    • /
    • 2016
  • WebRTC has quickly grown to be the world's advanced real-time communication in several platforms such as web and mobile. In spite of the advantage, the current technology in WebRTC does not handle a big-streaming efficiently between peers and a large amount request of users on the Signaling server. Therefore, in this paper, we put our work to handle the problem by delivering the flow of data with dynamical load balancing algorithms. We analyze the request source users and direct those streaming requests to a load balancing component. More specifically, the component determines an amount of the requested resource and available resource on the response server, then it delivers streaming data to the requesting user parallel or alternately. To show how the method works, we firstly demonstrate the load-balancing algorithm by using a network simulation tool OPNET, then, we seek to implement the method into an Ubuntu server. In addition, we compare the result of our work and the original implementation of WebRTC, it shows that the method performs efficiently and dynamically than the origin.

Dynamic Response Analysis of Top-tensioned Riser Under Sheared Current Load (전단류 하중을 받는 상부장력 라이저의 동적 응답 해석)

  • Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2013
  • A numerical scheme based on a mode superposition method is presented for the dynamic response analysis of a top-tensioned riser (TTR) under sheared current loads. The natural frequencies and mode shapes of the TTR have been calculated analytically for a beam with a slowly varying tension and pinned-pinned boundary conditions at the top and bottom ends. The lift coefficients and corresponding amplitudes used to estimate the vortex-induced modal force and damping for each mode were predicted via iterative calculations based on the input and output power balancing concept. Here, the power-in regions were controlled by the normal distribution function, for which the center was coincident with the lock -in location by local vortex-shedding, and the range was defined by the constant standard deviation for the reduced velocity by the local current speed. Finally, dynamic responses such as root-mean-squared displacement and stress were calculated using the mode superposition technique. In order to verify the presented scheme, a numerical calculation was performed for a TTR under an arbitrary linearly sheared current and linearly varying tension. A comparison with the results of the existing software showed that the presented scheme could give reliable and feasible solutions. Case studies were performed to investigate the effects of various current loads and tensions.

Novel Method for Circulating Current Suppression in MMCs Based on Multiple Quasi-PR Controller

  • Qiu, Jian;Hang, Lijun;Liu, Dongliang;Geng, Shengbao;Ma, Xiaonan;Li, Zhen
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1659-1669
    • /
    • 2018
  • An improved circulating current suppression control method is proposed in this paper. In the proposed controller, an outer loop of the average capacitor voltage control model is used to balance the sub-module capacitor voltage. Meanwhile, an individual voltage balance controller and an arm voltage balance controller are also used. The DC and harmonic components of the circulating current are separated using a low pass filter. Therefore, a multiple quasi-proportional-resonant (multi-quasi-PR) controller is introduced in the inner loop to eliminate the circulating harmonic current, which mainly contains second-order harmonic but also contains other high-order harmonics. In addition, the parameters of the multi-quasi-PR controller are designed in the discrete domain and an analysis of the stability characteristic is given in this paper. In addition, a simulation model of a three-phase MMC system is built in order to confirm the correctness and superiority of the proposed controller. Finally, experiment results are presented and compared. These results illustrate that the improved control method has good performance in suppressing circulating harmonic current and in balancing the capacitor voltage.

Enhancement of Cell Voltage Balancing Control by Zero Sequence Current Injection in a Modular Multilevel Converter (Modular Multilevel Converter에서 영상분 전류주입에 의한 셀간 전압평형화 제어의 향상)

  • Kim, Tae-Hyeong;Kwon, Byung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.159-160
    • /
    • 2014
  • 본 논문에서는 ${\Delta}$결선으로 구성된 Modular Multilevel Converter(MMC)에서 흐르는 전류가 매우 적은 경우 계통에 영향이 없이 셀 직류전압의 불평형을 제어할 수 있도록 영상분전류를 주입하는 방법을 제안하였고, 시뮬레이션을 통해 검증하였다.

  • PDF

PWM Control Method for DC link Voltage Balancing and Leakage Current Reduction in 3-level Inverter (3-레벨 인버터의 DC 링크 전압 밸런싱과 누설전류 저감을 위한 PWM 제어방법)

  • Choi, Nam-Sup;Lee, Eun-Chul;Ahn, Kang-Soon
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.137-138
    • /
    • 2015
  • 본 논문에서는 3-레벨 인버터 시스템의 DC 링크 전압 밸런싱과 동시에 공통모드 전압의 변동주파수를 최소화 하여 누설 전류를 저감하는 새로운 PWM 방법을 제안한다. 제안된 PWM은 공통모드전압과 중간점 제어능력에 따라 공간벡터를 분류하고 중간점 전압을 제어하면서 공통모드 전압의 변동이 최소화되는 벡터를 선택하도록 구성한다. 본 논문에서는 시뮬레이션을 통하여 제안된 PWM의 동작을 입증하였다.

  • PDF

A Fast Sorting Strategy Based on a Two-way Merge Sort for Balancing the Capacitor Voltages in Modular Multilevel Converters

  • Zhao, Fangzhou;Xiao, Guochun;Liu, Min;Yang, Daoshu
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.346-357
    • /
    • 2017
  • The Modular Multilevel Converter (MMC) is particularly attractive for medium and high power applications such as High-Voltage Direct Current (HVDC) systems. In order to reach a high voltage, the number of cascaded submodules (SMs) is generally very large. Thus, in the applications with hundreds or even thousands of SMs such as MMC-HVDCs, the sorting algorithm of the conventional voltage balancing strategy is extremely slow. This complicates the controller design and increases the hardware cost tremendously. This paper presents a Two-Way Merge Sort (TWMS) strategy based on the prediction of the capacitor voltages under ideal conditions. It also proposes an innovative Insertion Sort Correction for the TWMS (ISC-TWMS) to solve issues in practical engineering under non-ideal conditions. The proposed sorting methods are combined with the features of the MMC-HVDC control strategy, which significantly accelerates the sorting process and reduces the implementation efforts. In comparison with the commonly used quicksort algorithm, it saves at least two-thirds of the sorting execution time in one arm with 100 SMs, and saves more with a higher number of SMs. A 501-level MMC-HVDC simulation model in PSCAD/EMTDC has been built to verify the validity of the proposed strategies. The fast speed and high efficiency of the algorithms are demonstrated by experiments with a DSP controller (TMS320F28335).

A Route Selection Algorithm using a Statistical Approach (통계적 기법을 이용한 경로 선택 알고리즘)

  • Kim, Young-Min;Ahn, Sang-Hyun
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.1
    • /
    • pp.57-64
    • /
    • 2002
  • Since most of the current route selection algorithms use the shortest path algorithm, network resources can not be efficiently used also traffics be concentrated on specific paths resulting in congestgion. In this paper we propose the statistical route selections(SRS) algorithm which adopts a statistical mechanism to utilize the network resource efficiently and to avoid congestion. The SRS algorithm handles requests on demand and chooses a path that meets the requested bandwidth. With the advent of the MPLS it becomes possible to establish an explicit LSP which can be used for traffic load balancing. The SRS algorithm finds a set of link utilizations for route selection, computes link weights using statistical mechanism and finds the shortest path from the weights. Our statistical mechanism computes the mean and the variance of link utilizations and selects a route such that it can reduce the variance and the number of congested links and increase the utilization of network resources. Throughout the simulation, we show that the SRS algorithm performs better than other route selection algorithms on several metrics like the number of connection setup failures and the number of congested links.

Power Loss Modeling of Individual IGBT and Advanced Voltage Balancing Scheme for MMC in VSC-HVDC System

  • Son, Gum Tae;Lee, Soo Hyoung;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1471-1481
    • /
    • 2014
  • This paper presents the new power dissipation model of individual switching device in a high-level modular multilevel converter (MMC), which can be mostly used in voltage sourced converter (VSC) based high-voltage direct current (HVDC) system and flexible AC transmission system (FACTS). Also, the voltage balancing method based on sorting algorithm is newly proposed to advance the MMC functionalities by effectively adjusting switching variations of the sub-module (SM). The proposed power dissipation model does not fully calculate the average power dissipation for numerous switching devices in an arm module. Instead, it estimates the power dissipation of every switching element based on the inherent operational principle of SM in MMC. In other words, the power dissipation is computed in every single switching event by using the polynomial curve fitting model with minimum computational efforts and high accuracy, which are required to manage the large number of SMs. After estimating the value of power dissipation, the thermal condition of every switching element is considered in the case of external disturbance. Then, the arm modeling for high-level MMC and its control scheme is implemented with the electromagnetic transient simulation program. Finally, the case study for applying to the MMC based HVDC system is carried out to select the appropriate insulated-gate bipolar transistor (IGBT) module in a steady-state, as well as to estimate the proper thermal condition of every switching element in a transient state.

A Coordinative Control Strategy for Power Electronic Transformer Based Battery Energy Storage Systems

  • Sun, Yuwei;Liu, Jiaomin;Li, Yonggang;Fu, Chao;Wang, Yi
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1625-1636
    • /
    • 2017
  • A power electronic transformer (PET) based on the cascaded H-bridge (CHB) and the isolated bidirectional DC/DC converter (IBDC) is capable of accommodating a large scale battery energy storage system (BESS) in the medium-voltage grid, and is referred to as a power electronic transformer based battery energy storage system (PET-BESS). This paper investigates the PET-BESS and proposes a coordinative control strategy for it. In the proposed method, the CHB controls the power flow and the battery state-of-charge (SOC) balancing, while the IBDC maintains the dc-link voltages with feedforward implementation of the power reference and the switch status of the CHB. State-feedback and linear quadratic Riccati (LQR) methods have been adopted in the CHB to control the grid current, active power and reactive power. A hybrid PWM modulating method is utilized to achieve SOC balancing, where battery SOC sorting is involved. The feedforward path of the power reference and the CHB switch status substantially reduces the dc-link voltage fluctuations under dynamic power variations. The effectiveness of the proposed control has been verified both by simulation and experimental results. The performance of the PET-BESS under bidirectional power flow has been improved, and the battery SOC values have been adjusted to converge.