
Journal of Digital Contents Society Vol. 17 No. 6 Dec. 2016(pp. 581-592)

https://doi.org/10.9728/dcs.2016.17.6.581

※ Corresponding Author : Jinsul Kim

Received : December 11, 2016

Revised : December 25, 2016

Accepted : Decembe 31, 2016

*, **, ****, ***** School of Electronics and

Computer Engineering, Chonnam National University

email: jsworld@chonnam.ac.kr

*** Electronics and Telecommunications Research

Institute

email: jangjh@etri.re.kr

▣ This work was supported by 'The Cross-Ministry

Giga KOREA Project' grant from the Ministry of

Science, ICT and Future Planning, Rep. of

A Dynamical Load Balancing Method for Data Streaming and User

Request in WebRTC Environment

Linh Van Ma*, Sanghyun Park**, Jong-hyun Jang***, Jaehyung Park****, Jinsul Kim*****

Abstract

WebRTC has quickly grown to be the world's advanced real-time communication in several

platforms such as web and mobile. In spite of the advantage, the current technology in WebRTC

does not handle a big-streaming efficiently between peers and a large amount request of users on

the Signaling server. Therefore, in this paper, we put our work to handle the problem by delivering

the flow of data with dynamical load balancing algorithms. We analyze the request source users and

direct those streaming requests to a load balancing component. More specifically, the component

determines an amount of the requested resource and available resource on the response server, then

it delivers streaming data to the requesting user parallel or alternately. To show how the method

works, we firstly demonstrate the load-balancing algorithm by using a network simulation tool

OPNET, then, we seek to implement the method into an Ubuntu server. In addition, we compare

the result of our work and the original implementation of WebRTC, it shows that the method

performs efficiently and dynamically than the origin.

Keywords : Big data streaming, Dynamical algorithm, Load balancing, Round robin, WebRTC

WebRTC 환경에 데이터 스트리밍 및

사용자 요청에 따른 동적로드 밸런싱 방법

Linh Van Ma*, 박상현**, 장종현***, 박재형****, 김진술*****

요 약

WebRTC는 웹과 모바일과 같이 여러 플랫폼에서 세계 최고 수준의 실시간 커뮤니케이션으로 빠르게

성장했다. WebRTC의 현재 기술은 peer와 시그널링 서버에서 사용자가 요청한 많은 양의 큰 스트리밍

을 효율적으로 처리하지 못한다. 따라서, 본 논문에서는 동적로드 밸런싱 알고리즘을 사용하여, 데이터

흐름 전달을 제공함으로써 문제를 처리하는 작업을 수행한다. 또한, 사용자가 요청하는 소스를 분석하고

이러한 스트리밍 요청을 로드 밸런싱 구성 요소에 전달한다. 구체적으로 구성 요소는 요청된 리소스와

사용가능한 리소스의 양을 응답 서버에서 결정한 후 스트리밍 데이터를 요청하는 사용자에게 병렬 또는

교대로 전달한다. 이와 같은 방법을 검증하기 위해 네트워크 시뮬레이션 도구 OPNET을 사용하여 로드

밸런싱 알고리즘을 시연 후 우분투 서버에 적용하여 구현한다. 또한 실험을 통해 도출된 결과와

WebRTC의 구현을 비교하여 제안함으로써 기존 방법보다 효율적이고 동적으로 수행되는 지를 보여준

다.

키워드 : 퍼지 의사 결정, 추천 시스템, 소셜 네트워크, 개인 서비스

582 Journal of Digital Contents Society Vol. 17 No. 6 (Dec. 2016)

1. Introduction

In the era of the Internet, creating

knowledge and sharing information is the need

of the life as well as the progress of

humankind. Thus, people are more and more

involving to share knowledge that requires an

efficiency fundamental platform. Indeed, they

continually require the platform to be the

same as what the real life does. Hence,

peer-to-peer real-time communication [1]

emerges to adapt the unending demand of the

Internet user.

The Internet applications are creating much

of social communities [2]. Through the

theoretical, ethical and practical issues of

using the internet in many studies, the social

is an essential resource for researchers

wishing to assess how the latest techniques,

tools, and methods in internet-mediated

research may support and expand research in

their own field. Internet environments offer

design principles for the development of

innovations; features tested, customizable

inquiry projects that students, teachers, and

professional developers can enact and refine;

and introduces new methods and assessments

to investigate the impact of technology on

inquiry learning. So far, Internet culture is the

virtual spaces and places created by the

citizens of the Net and their claims to the

hotly contested notion of “virtual community”;

the virtual bodies that occupy such spaces;

and the desires that animate these bodies.

Hence, network communication has a very

vital role in the life. Especially, real-time

communication such as Peer-to-peer (P2P) [1]

which is a decentralized communications model

in which each party has the same capabilities

and either party can initiate a communication

session. Unlike the client/server model, in

Korea(GK16P0100, Development of Tele Experience

Service SW Platform based on Giga Media).

which the client makes a service request and

the server fulfills the request, the P2P network

model allows each node to function as both a

client and server. Typically, peer-to-peer

applications allow users to control many

parameters of operation. Moreover, the recent

emerging technology, WebRTC [3] has a great

advantage since a user can make voice

calling, video chat, and P2P file sharing

without the need of either internal or external

plugins. In [4] authors addressed the

application of WebRTC in an enterprise that

the enterprise network enforces strict security

requirements resulting in very restrictive

firewalls and network border elements. On the

other hand, WebRTC strives to create an

end-to-end secure media path between the

two browser instances with little or no

interference from any intermediate entity.

Communication technologies are increasingly

developing in both application and research

field because of unceasing user demands.

Recent research described many substantial

advancements in the field of data stream

processing in WebRTC [5-7]. However, there

is an increasing number of emerging

applications which requires a real-time

processing of very large-volume data streams.

The volume of the data streams is such that

a single node is not able to process even in a

single operator of a query for the entire data

stream. They put their research efforts on

data streaming which mainly focused on

scaling in the number of queries or query

operators, but overlooked the scalability issue

with respect to the stream volume. Besides,

due to the pervasive use of computer systems

to collect, communicate, and process data,

techniques for computing with large amounts

of data that do not fit into traditional

databases. Thus, big data has become

increasingly important. Essentially, any

interesting big data computation requires

asymptotically linear time in the size of the

A Dynamical Load Balancing Method for Data Streaming and User Request in WebRTC

Environment 583

data examined because it examines each and

every piece of data. Since such computations

require relatively sophisticated systems support

such as MapReduce or Hadoop [8].

Suppose the situation that a specific user

receives thousands of user requests for getting

the resource in WebRTC. In this case, if the

user does not have enough computing

resources, the system itself is slowed down or

even the service does not respond any user

request. Especially, the current streaming

progress between the user and other peers

loses their connection, therefore, it increases

transmission cost. Another scenario is that

thousands of users want to establish a

connection with their desire peers, the request

must connect and query on the Signaling

server before transmitting data in P2P. If the

Signaling server cannot handle the requests, it

refuses many requests for establishing the

connection. The two above scenarios usually

occur when a service has millions of users.

Thus, in this paper, we propose a load

balancing method for handling the above big

request/streaming scenarios. On the side of

the clients, we provide a load balancing

component in which every request or

streaming must pass through a handling

center to regulate network traffic. The center

determines and compares the available

resource and requests resource for delivering

data in an appropriate way. On the side of the

Signaling server, we also have the handling

center of the request before pushing those

requests to the server. All of the requests

must queue and alternate. In addition, we have

a priority in special requests.

In the next section, we describe some basic

knowledge in streaming big data, real-time

streaming, an advance research of WebRTC

and its API, and the related research. In the

experimental section, we show our efforts to

explain the implementing of our proposed

algorithm. Finally, we conclude the research

with future research.

2. Related Research

2.1 Data Streaming for Big Data in

Network Communication

In network communication, data streaming

is the transfer of data at a steady high-speed

rate sufficient to support such applications as

high-definition television (HDTV) or the

continuous backup copying to a storage

medium of the data flow within a computer.

Data streaming requires some combination of

bandwidth sufficiency, and for the real-time

human perception of the data, the ability to

make sure that enough data is being

continuously received without any noticeable

time lag.

Currently, service providers are looking to

leverage the new generation of “Big Data”

[9-10] analytics tools and techniques to exploit

the untapped reservoirs of data that exist

within their network and IT systems. The

fine-grained data that can be collected from

network probes, intelligent sensors and other

data sources are the fuel that powers big data

analytics and provides new insights into ways

to improve customer experience, optimize

networks, drive greater operational efficiency,

and enable broader service offerings.

In approaching big data real-time

processing, data needs to be quickly processed

in nearly real-time to analyze the data to see

whether new patterns emerge. In most of the

cases, the data is stored in an operational data

store, then it is analyzed in the data

warehouse by processing those data

information in batch and it is not actually in

real-time. Therefore, we have no benefit from

this operation. Clearly, the analysis has to be

fast and practical. Hence, streaming data must

focus on speed since mining, data applications

require a continuous stream of often

584 Journal of Digital Contents Society Vol. 17 No. 6 (Dec. 2016)

unstructured data to be processed. This

requirement is coming more and more into

every vertical. Many different frameworks and

products are available on the market already,

however, we have a small number of mature

solutions with good tools and commercial

support today. In fact, the mining knowledge

of the analysis decreases with time. As such,

we must have an efficiency strategy in

streaming the data according to network

conditions.

2.2 An Overview of Real-time

Communication WebRTC

WebRTC is a recent emerging technology,

which provides browsers and mobile

applications with real-time communications

(RTC) capabilities. The WebRTC components

have been optimized to best serve for multiple

tasks, but real-time peer-to-peer audio and

video communications are the primary benefits.

(Figure 1) shows that in order to

communicate with another device, a peer uses

a signaling process to locate another device,

bypasses security and firewall protections, and

transmit all multimedia communications in

real-time.

(Figure 1) WebRTC signaling process

To avoiding depletion problem of IPv4

addressing space, users now are generally

accessed the internet from a work or

home-based network. Their computer typically

locates behind a firewall and Network Access

Translation (NAT), therefore, they do not

have a static public IP address. Thus, we

need a network information discovery process

to connect users by using the Signalling

which is based on the Javablocked Session

Establishment Protocol (JSEP).

(Figure 2) Establishing connection process in

WebRTC

The signaling involves network discovery

and NAT traversal, session creation and

management, communication security, media

capability metadata and coordination, and error

handling. Then, the signaling process

negotiates and establishes the network session

connection between peers. This process is

analogous to making a phone call. The initial

session negotiation and establishment happen

using a signaling/communication protocol

specialized in multimedia communications. Any

peer that is attempting to communicate with

another peer generates a set of ICE

candidates, where ICE stands for the

Interactive Connectivity Establishment protocol.

The candidates are used to represent a given

combination of IP address, port, and transport

protocol. (Figure 2) depicts the above

described process when both Peer A and Peer

B establish their connection in WebRTC.

The process of transmitting data between

peers depicts in (Figure 3). At the media

source, input devices are opened to capture.

A Dynamical Load Balancing Method for Data Streaming and User Request in WebRTC

Environment 585

Media from the input devices is encoded into

packets that are transmitted across the

network. At the media destination, the packets

are decoded and formed into a media stream.

The media stream is sent to output devices.

An application that wishes to enable two-way

audio and video communications between peers

can create four media streams in which an

audio stream in each direction, a video stream

in each direction.

In addition, WebRTC has data channels

which a channel being able to exchange data

directly between two browsers, without any

sort of intermediary web socket server, is

very useful. The data channels carry the same

advantages of WebRTC video and audio, it is

fully peer-to-peer and encrypted. This means

the data channels are useful for things like

text chat applications, file transfers, P2P file

exchanges, gaming, etc. When the signaling is

completed, then we have a peer-to-peer

connection between two users which can

contain video and audio streams, and the data

channel.

(Figure 3) The process of transmitting data

between peers

2.3 Load Balancing in Real-time

Communication

Distributed systems for big data

management very often face the problem of

load imbalance among nodes. To address this

issue, the load balancing ought to be achieved

using an inferred system state; based on

locally gathered data or the system must be

optimized in structure to allow load balancing

to be more easily provisioned. In [11] authors

described three potentially viable methods for

load balancing in large scale cloud systems.

Firstly, a nature-inspired algorithm may be

used for self-organization, achieving global

load balancing via local server actions.

Secondly, self-organization can be engineered

based on random sampling of the system

domain, giving a balanced load across all

system nodes. Thirdly the system can be

restructured to optimize the job assignment at

the servers. It aims to provide an evaluation

and comparative study of these approaches.

Currently, in cloud computing [12], it mainly

considers the current system condition in VM

(Virtual Machine) resources scheduling, but

seldom considers the previous condition before

scheduling and the influence on system load

after scheduling which usually leads to load

imbalance. Therefore, in [13] authors presented

a scheduling strategy to realize load balancing.

According to historical data and current state

and through genetic algorithm, this method

computes in advance the influence it will have

when the current VM service resources that

need deploying are arranged to every physical

node, then it chooses the deployment that will

have the least influence on the system. In this

way, the method realizes the best load

balancing and reduces or avoids the dynamic

migration.

As more applications are becoming

data-intensive and experiencing data explosion

[14] such that tasks are dependent and task

execution involves processing a large amount

of data, data-aware scheduling and load

balancing are two indispensable yet orthogonal

needs. Migrating tasks randomly through work

stealing would compromise the data-locality

and incur significant data-transferring

overhead. Furthermore, the mapping process

may cause poor load balancing due to the

potential unbalanced data distribution.

Therefore, in the work [15] authors

investigated a data-aware work stealing

586 Journal of Digital Contents Society Vol. 17 No. 6 (Dec. 2016)

technique that is able to achieve good load

balancing, and yet still tries to best exploit

data locality. The results showed that their

technique is scalable to achieve both good load

balancing and high location-hit rate.

The scale of a cloud computing platform

would be very large and provides various

kinds of operation systems for the consumer,

and applications running on the cloud are

numerous. Such a cloud environment can be

treated as a complex system which has the

characteristic of dynamic, open, non-linear

interact and a lot of components. Load

balancing in the cloud should be distributed,

flexible and extensible. Based on [16], authors

of [17] proposal a load balancing mechanism

based on ant colony and complex network

theory in open cloud computing federation.

Their results showed that it improves many

aspects of the related Ant Colony algorithms

which are proposed to realize load balancing

in distributed systems.

As compared to P2P file sharing system,

the real-time playback constraint of live media

poses challenges in designing efficient live

streaming systems. The authors in [18]

focused on designing request-peer selection

algorithms. The simplest approach is to pick

up a potential provider randomly. Through

extensive simulations, we showed that our

algorithm distributes the traffic load more

evenly among peers. As a result, the peers’

uplink bandwidth is better utilized and the

streaming server load is reduced, meanwhile,

the quality of experience is also improved.

One way to perform such updates is to

design specific dynamic algorithms or

incremental algorithms for each specific

application of interest. While prior work on

self-adjusting computation required to make

reasonably substantial changes to the program

code, recent developments allow the types of a

program to be annotated with just a few

keywords and employ a type-directed

translation algorithm to generate the necessary

changes to the code automatically. Thus, from

[19] authors restricted themselves to the

MapReduce paradigm. They implemented a

single-node version of MapReduce in the

implicit self-adjusting language. It allows them

to read data from a file system into the

memory and change the data incrementally

while performing automatic incremental

updates after each change.

3. Load Balancing System

Proposed Overview

(Figure 4) System proposed overview

In the system, a bunch of users has

thousands of users is preparing to send a

request to establish a connection to the

Signaling server for obtaining resources such

as sharing data or video from a specific user

as depicted in (Figure 4). In this case, we set

up a load-balancer to handle an overloading

problem if it occurs. When the connection is

ready to transmit data in real-time streaming

service, the user uses WebRTC to send and

receive video, audio, and data in both

directions via the load-balancer. In the

load-balancer, we implement our proposed

algorithm for delivering data as well as handle

the users’ requests efficiency. It detects an

amount of available resource and requests

resource to transmit data appropriately. If the

user can handle a certain amount of request,

the load-balancer eliminate itself in the

transmitting process dynamically.

A Dynamical Load Balancing Method for Data Streaming and User Request in WebRTC

Environment 587

3.1 System Design

(Figure 5) depicts the overall system

architecture for a real-time big-streaming

services using WebRTC and a load-balancer.

First, a user starts their real-time streaming

services, as such, other users can connect to

the user via applications which support

WebRTC real-time communication such as the

Chrome, Firefox browser, and mobile

applications. In the process of establishing the

connection, the Signaling assists to establish

the connection. In which, the Signaling

processor in a web-server is a coordinated

communication to send and receive streaming

data between users. After the process in the

Signaling is ended, users send and receive

data in real-time over the load-balancer.

(Figure 5) System Design with WebRTC and

Load-balancers

3.2 A Load Balancing Method for

Efficient Data Transmission

In a case of large amount of traffic which

generated from a big bunch of users, we

apply a load-balancing technique to improve

the quality of service and reduce the overload

of the network system.

(Figure 6) depicts the load-balancing flow

and the method to reduce the overload traffic

problem that we have proposed. Data is

transmitted from User1 to both User2 and

User3 after passing through the load-balancer.

However, User1 would have the overload of

increased traffic if User4 required for

obtaining data from User1, thus, it is difficult

to ensure the reliability data transmission

between User1 and both User2, User3.

Therefore, we use the load-balancer to

distribute traffic in the network. The

load-balancer prevents overloading of User1

by redirecting the requesting data in User4 to

receive data from User2 or User3, where data

have already transmitted to these users.

(Figure 6) Load-balancing flow to handle

big-streaming

The dispersion of the packages can

efficiently handle the traffic via a controller

center, which assists the existing users to

send the data reliably. Hence, the amount of

data distribution is expressed as follows

equations,

min ≪ max (1)

 
 



 (2)

 


(3)

max in formula (1) is the maximum traffic

which a particular server can handle to

transmit, min is the minimum traffic data

588 Journal of Digital Contents Society Vol. 17 No. 6 (Dec. 2016)

from the server. The  of formula (2) is a

value obtained by summing traffic from all the

servers,  is a value obtained by dividing

the sum of the traffic to the total channel of

the network.

4. Simulation and Experiment

4.1 Simulating the Proposed Load

Balancing with OPNET

In this section, we conduct the experiment

in Windows 7 desktop-based OPNET [20]

network simulation program, which is a

software that provided performance

management for computer networks and

applications, to evaluate the performance of

the proposed load-balancing algorithm. The

system simulation is depicted in (Figure 7)

with eight clients on the left, and three

streaming servers which support real-time

communication on the right. The load-balancer

in the middle of the connection has

responsibility for distributing data if eight

users focus on achieving data on a specific

server.

(Figure 7) System infrastructure simulation

overview

Both (Figure 8-a), (Figure 8-b) depict that

X-coordinate is the transmitting time and

Y-coordinate is the amount of traffic

transmission in bits/second. The blue line is

the data which is sent from the server; the

red line is the received data in the client

(User1).

(Figure 8-a) The overload occurs in the normal

processing

(Figure 8-b) The overload occurs in the

unstable network traffic

In addition, in (Figure 8-a) the transmission

rate is set to the processing speed of 64kbps

in each user so that the average generated

transmit is 1.024bps. As a result, data is

received reliably. However, if we have a lot of

traffic, (Figure 8-b) shows a picture of an

unstable traffic. Furthermore, (Figure 9) shows

the results processed by the load-balancing.

The blue line is a server sending data, the red

line (User1) and the green line (User2) are

graphs of receiving data from two clients. In

(Figure 8-b), the servers had provided

A Dynamical Load Balancing Method for Data Streaming and User Request in WebRTC

Environment 589

unreliable data due to the server overloading

data, but in (Figure 9) shows that data is

received stably which is transmitted from the

servers.

(Figure 9) Load balancing result of delivering

data on the three servers

4.2 Implementation of the Proposed

Method in Ubuntu

(Figure 10) Handling command in the

Signaling server

We have installed the WebRTC Signal

server in Ubuntu 12.04 by using Node.js [21].

In the system, we implemented our

load-balancing algorithm. As shown in (Figure

10), the server handles requests from browser

user and displays user’s request as well as

responding time.

(Figure 11) shows the real-time streaming

services through WebRTC. We have four

devices which are Tablet, Notebook, PC, and

Phone. All of them have established the

connection with the Signaling server,

https://168.131.39.187:3000/. Each of these

devices sent and received a video and voice

stream in real time via the P2P

communication using the Chrome web

browser. Then we access the WebRTC

monitoring plug-in in Chrome which was

provided by Google at

chrome://webrtc-internals/ to observe data

transmission variation. (Figure 12) shows that

the transmission rate is steady without any

corruption of the big-streaming process.

(Figure 11) Implementation of WebRTC

load-balancing algorithm in Ubuntu

(Figure 12) A statistic of package sending and

receiving in video channel

5. Conclusion

In this paper, we have proposed the

load-balancing method for improving

WebRTC-based real-time streaming service

efficiency when a lot of users establish a

connection for getting data. It causes the

590 Journal of Digital Contents Society Vol. 17 No. 6 (Dec. 2016)

overloading problem. To show how the

method works and its performance, we set up

the simulation in the network simulation tool

OPNET, it showed that after several seconds

the transmission is balanced appropriately to

the available resource of the user who

broadcast their data to a bunch of large users.

In addition, we also implemented the method

in WebRTC original API, four devices use to

access the Signaling server, and the

monitoring result showed that the client and

the server handle the large requests, efficiency

without any corruption at both service

provider and client which receives streaming

data. In the future work, we will focus to

improve the algorithm with a smart system,

which combines with CND or central

distributing server to reducing traffic

generating from users.

References

[1] A. Passarella, “A survey on content-centric technolo

gies for the current Internet: CDN and P2P solution

s," Computer Communications, Vol.35, pp.1-32, 201

2.

[2] M. C. Linn, “Internet environments for science educa

tion: Routledge,” 2013.

[3] E. Rescorla, “WebRTC Security Architecture," 2015.

[4] A. Johnston, J. Yoakum, and K. Singh, “Taking on

WebRTC in an enterprise," Communications Magaz

ine, IEEE, Vol.51, pp.48-54, 2013.

[5] Lee HN, Kim DH, “Selection of Scalable Video Codin

g Layer Considering the Required Peak Signal to

Noise Ratio and Amount of Received Video Data in

Wireless Networks,” Journal of Digital Contents So

ciety, Vol.17, No.2, pp.89-96, 2016.

[6] Linh. M. Van, J. Kim, S. Park, J. Kim, and J. Jang,

“An efficient Session_Weight load balancing and sc

heduling methodology for high-quality telehealth ca

re service based on WebRTC," The Journal of Super

computing, Vol.72, No.10, pp.3909-3926, 2016.

[7] Linh. M. Van, Jang JH, Kim J, “Adjusting Local Net

work Speed by Using Fuzzy Theory with An Illustr

ation in WebRTC Environment,” Journal of Digital

Contents Society, Vol.16, No.6, pp.917-25, 2015.

[8] J. Dean and S. Ghemawat, “MapReduce: simplified

data processing on large clusters," Communications

of the ACM, Vol.51, No.1, pp.107-113, 2008.

[9] P. Zikopoulos, C. Eaton, and others, “Understanding

big data: Analytics for enterprise class hadoop and

streaming data,” McGraw-Hill Osborne Media, 201

1.

[10] Kong HS, Song EJ, “A Study on Hotel Customer

Reputation Analysis based on Big Data,” Journal of

Digital Contents Society, Vol.15, No.2, pp.219-25, 20

14.

[11] M. Randles, D. Lamb, and A. Taleb-Bendiab, “A

comparative study into distributed load balancing al

gorithms for cloud computing,” Advanced Informati

on Networking and Applications Workshops (WAI

NA), 2010 IEEE 24th International Conference, pp.55

1-556, 2010.

[12] P. Mell and T. Grance, “The NIST definition of clou

d computing,” 2011.

[13] J. Hu, J. Gu, G. Sun, and T. Zhao, “A scheduling

strategy on load balancing of virtual ma-chine reso

urces in cloud computing environment," in Parallel

Architectures, Algorithms and Programming (PAA

P) Third International Symposium, pp.89-96, 2010..

[14] A. S. Szalay, G. Bell, J. Vandenberg, A. Wonders,

R. Burns, D. Fay, et al., “Graywulf: Scalable clustere

d architecture for data intensive computing," in Syst

em Sciences, HICSS'09. 42nd Hawaii International

Conference, pp.1-10, 2009.

[15] K. Wang, X. Zhou, T. Li, D. Zhao, M. Lang, and

I. Raicu, “Optimizing load balancing and data-localit

A Dynamical Load Balancing Method for Data Streaming and User Request in WebRTC

Environment 591

y with data-aware scheduling," Big Data 2014 IEEE

International Conference, pp.119-128, 2014.

[16] Z. Zhang and X. Zhang, “Realization of open cloud

computing federation based on mobile agent," Intelli

gent Computing and Intelligent Systems ICIS 2009

IEEE International Conference, pp.642-646, 2009.

[17] Z. Zhang and X. Zhang, “A load balancing mechanis

m based on ant colony and complex network theory

in open cloud computing federation," in Industrial

Mechatronics and Automation (ICIMA), 2010 2nd In

ternational Conference, pp.240-243, 2010.

[18] N. Liu, Z. Wen, K. L. Yeung, and Z. Lei, “Request-p

eer selection for load-balancing in P2P live streamin

g systems," in Wireless Communications and Netw

orking Conference (WCNC) IEEE, pp.3227-3232, 20

12.

[19] U. A. Acar and Y. Chen, “Streaming big data with

self-adjusting computation," Proceedings of the 201

3 workshop on Data driven functional programming,

pp.15-18, 2013.

[20] O. Modeler, “OPNET Technologies Inc," 2009.

[21] M. Cantelon, M. Harter, T. Holowaychuk, and N.

Rajlich, “Node. js in Action: Manning,” 2014.

Linh Van Ma

2013 : Hanoi University of

Science and Technology,

Vietnam (B.S. Degree).

2013～2015: Researcher and Developer at Samsung

Vietnam Mobile R&D Center –

SVMC.

2015～now： School of Electronics and Computer

Engineering - Smart & Media

Computing Laboratory.

Research Interests : Mobile Cloud Computing, Next

Generation of Mobile Platform, Mobile

Operating System and Peer-toPeer

Network

Sanghyun Park
2010 : Computer and Information

from the University of

Korea Nazarene.

2012 : Chonnam National

University, School of

Electronic and Computer

Engineering

(M.S Degree)

2010～2012 : Engineer in System Development

Team of Media Flow Company.

2014～now： Doctoral candidate in Electronics and

Computer Engineering at Chonnam

National University.

Research Interests : Interactive Media, Systems

Development, Embedded of systems, Digital

Media and Cloud computing.

592 Journal of Digital Contents Society Vol. 17 No. 6 (Dec. 2016)

Jaehyung Park

1991 : Yonsei University (B.S.

Degree).

1993 : Korea Advanced Institute

of Science and Technology

(KAIST) (M.S Degree).

1997 : Korea Advanced Institute of Science and

Technology (KAIST) (Ph.D Degree).

1997～1998: Researcher in Center for Artificial

Intelligence Research(CAIR), KAIST.

1998~2002: Senior Researcher in Network Laboratory,

Electronics and Telecommunications

Research Institute (ETRI).

2002～now : Professor in Chonnam National

University, Gwangju, Korea.

Research Interests : Internet Protocols, Multicast

Routing, Wireless Mesh/Ad-hoc Networks,

and Network Security/Cryptography.

Jong-Hyun Jang
1988 : Kyungpook National

University of Electronic

Engineering(B.S Degree).

2000 : Chungnam National

University of Computer

Science (M.S Degree)

2004 : Hankuk University of Foreign Studies of

Information and Communication (Ph.D

Degree).

1988～1994: Assistant Manager in Daewoo Telecom

Co., Ltd.

1994～now: Researcher in Real and Emotional

Sense Platform Research Section,

Electronics and Telecommunications

Research Institute (ETRI).

Research Interests : Real-time Middleware for

Telecommunication Systems, Home

Networking Systems, and Real-Sense

Media Services

Jinsul Kim
2001 : University of Utah, Salt

Lake City, Utah, USA

(B.S. Degree).

2005 : Korea Advanced Institute

of Science and

Technology (KAIST)

(M.S Degree).

2008 : Korea Advanced Institute of Science and

Technology (KAIST) (Ph.D Degree).

2005～2008: Researcher in IPTV Infrastructure

Technology Research Laboratory,

Broadcasting/Telecommunications

Convergence Research Division,

Electronics and Telecommunications

Research Institute (ETRI).

2009～2011: Professor in Korea Nazarene

University, Chon-an, Korea.

2011～now: Professor in Chonnam National

University, Gwangju, Korea.

Research Interests : QoS/QoE, Measurement/

Management, IPTV, Mobile IPTV, Smart

TV, Multimedia Communication and Digital

Media Arts.

