• Title/Summary/Keyword: Current transient

Search Result 1,271, Processing Time 0.027 seconds

Study on Discomfort of Vertical Whole-body Shock Vibration Having Various Magnitudes, Frequencies and Damping (다양한 크기와 주파수 그리고 감쇠를 갖는 상하방향 전신 충격진동에 대한 불편함 연구)

  • Ahn, Se-Jin;Griffin, Michael J.;Yoo, Wan-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.50-57
    • /
    • 2007
  • Shocks are excited by impulsive forces and cause discomfort in vehicles. Current standards define means of evaluating shocks and predicting their discomfort, but the methods are based on research with a restricted range of shocks. This experimental study was designed to investigate the discomfort of seated subjects exposed to a wide range of vertical shocks. Shocks were produced from the responses of one degree-of-freedom models, with 16 natural frequencies (from 0.5 to 16 Hz) and four damping ratios (0.05 0.1, 0.2 and 0.4), to a hanning-windowed half-sine force inputs. Each type of shock was presented at five vibration dose values in the range $0.35\;ms^{-1.75}$ to $2.89\;ms^{-1.75}$. Fifteen subjects used magnitude estimation method to judge the discomfort of all shocks. The exponent in Stevens' power law, indicating the rate of growth in discomfort with shock magnitude, decreased with increasing fundamental frequency of the shocks. At all magnitudes, the equivalent comfort contours showed greatest sensitivity to shocks having fundamental frequencies in the range 4 to 12.5 Hz. At low magnitudes the variations in discomfort with the shock fundamental frequency were similar to the frequency weighting $W_b$ in BS 6841, but low frequency high magnitudes shocks produced greater discomfort than predicted by this weighting. At some frequencies, for the same unweighted vibration dose value, there were small but significant differences in discomfort caused by shocks having different damping ratios. The rate of increase in discomfort with increasing shock magnitude depends on the fundamental frequency of the shock. In consequence, the frequency-dependence of discomfort produced by vertical shocks depends on shock magnitude. For shocks of low and moderate discomfort, the current methods seem reasonable, but the response to higher magnitude shocks needs further investigation.

Difference of Neuronal Recovery by Incubation Condition after Transient Hypoxia (배양조건에 의한 일과성 저산소상태 후 신경세포회복의 차이)

  • Moon, Soo-Hyeon;Oh, Jae-Inn;Park, Youn-Kwan;Chung, Heung-Sub;Lee, Hoon-Kap;Lee, Ki-Chan
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.9
    • /
    • pp.1161-1170
    • /
    • 2000
  • Objective : The transverse hippocampal slice is one of the most commonly studied in vitro models of mammalian brain physiology. However, despite its broad usage, there has been no standardization of slice preparation techniques or recording condition. It is well known that variations in recording conditions can result in profound different effects to neuronal responses. Evoked field potentials, recorded extracellularly, were used to investigate the effects of variations in hippocampal slice preparation protocol on hypoxia responses of CA1 neurones. Material & Methods : Before hypoxic injury, hippocampal slices were incubated for 4 hours. During incubation period, the slices were placed in a incubation chamber($21^{\circ}C$) for recovery from preparation injury and then transferred to recording chamber($34^{\circ}C$) for more recovery and baseline electric recording with current stimulation(0.1Hz). Various time periods in incubation chamber and recording chamber were applied to each experimental group(group 1=60min : 180min, group 2=90min : 150min, group 3=180min : 60min, time in incubation chamber : time in recording chamber) before 10 min hypoxia produced by replacing 95% $O_2$+5% $CO_2$ mixed gas to 95% $N_2$+5% $CO_2$ gas. Calcium, Magnesium ions and several drugs effecting on glutamate receptor also were studied. Recoveries from hypoxic injury of hippocampal slices were estimated by percent recovery of population spike(PS). Statistic analysis of study were performed using paired t-test. Results : The percent recovery of PS after 10min hypoxia was considerably enhanced by increasing the period of current stimulation during incubation period before hypoxic injury. Temperature effect on the result of this experiment was also studied(group 4) but the result from this showed no statistic significance. Low magnesium ion concentration of artificial CSF(Mg-free aCSF) during incubation period enhanced the recovery of PS but low calcium (calcium-free) and high magnesium ion concentration(2mM) reduced it after hypoxic injury. L-glutamate($100{\mu}M$) and AP-5($50{\mu}M$) had no effect on the recovery of PS but CNQX($10{\mu}M$) in artificial CSF during incubation period markedly enhanced the recovery of PS. Co-treatment of AP-5($50{\mu}M$), CNQX($10{\mu}M$) and high magnesium concentration(2mM) enhanced recovery of PS in immediate following period of hypoxic injury but the effect of cotreatment after then decayed rapidly and lost statistic significance. Conclusions : Judging from above results, the condition of baseline recording is important in observing the recovery of population spike after hypoxia, and the time and the condition should be controled more strictly to obtain reliable results.

  • PDF

Relaxation Patterns of Human Gastric Corporal Smooth Muscle by Cyclic Nucleotides Producing Agents

  • Kim, Young-Chul;Choi, Woong;Sung, Ro-Hyun;Kim, Heon;You, Ra-Young;Park, Seon-Mee;Youn, Sei-Jin;Kim, Mi-Jung;Song, Young-Jin;Xu, Wen-Xie;Lee, Sang-Jin;Yun, Hyo-Yung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.503-510
    • /
    • 2009
  • To elucidate the mechanism of cyclic nucleotides, such as adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP), in the regulation of human gastric motility, we examined the effects of forskolin (FSK), isoproterenol (ISO) and sodium nitroprusside (SNP) on the spontaneous, high $K^+$ and acetylcholine (ACh)-induced contractions of corporal circular smooth muscle in human stomach. Gastric circular smooth muscle showed regular spontaneous contraction, and FSK, ISO and SNP inhibited its phasic contraction and basal tone in a concentration-dependent manner. High $K^+$ (50 mM) produced sustained tonic contraction, and ACh $(10\;{\mu}M)$ produced initial transient contraction followed by later sustained tonic contraction with superimposed phasic contractions. FSK, ISO and SNP inhibited high $K^+$-induced tonic contraction and also ACh-induced phasic and tonic contraction in a reversible manner. Nifedipine $(1\;{\mu}M)$, inhibitor of voltage-dependent L-type calcium current $(VDCC_L)$, almost abolished ACh-induced phasic contractions. These findings suggest that FSK, ISO and SNP, which are known cyclic nucleotide stimulators, inhibit smooth muscle contraction in human stomach partly via inhibition of $VDCC_L$.

Evaluation of Peri-procedural Warfarin Therapy Undergoing Cardioversion in Patients with Atrial fibrillation (심방세동 환자의 심율동전환 시행 전·후 warfarin 치료의 적절성 평가)

  • Moon, Jung-Yeon;Kim, Bo-Ram;Jo, Eun-Jung;Cho, Yoon-Sook;Han, Hyun-Joo;Choi, Eue-Keun
    • Korean Journal of Clinical Pharmacy
    • /
    • v.26 no.3
    • /
    • pp.201-206
    • /
    • 2016
  • Objective: Direct current cardioversion for atrial fibrillation could be associated with the risk of thromboembolic events. Anticoagulation therapy with warfarin (INR 2.0-3.0) is recommended 3 weeks before and 4 weeks after cardioversion to reduce the risk of thromboembolism. This study evaluated warfarin therapy in pharmacist-managed anticoagulant services (ACS). Methods: This retrospective study was performed in 106 patients with atrial fibrillation from 2012 to 2013. The primary efficacy endpoint was the composite of stroke, transient ischemic attack, myocardial infarction, and cardiovascular death. The primary safety measure was major bleeding. To evaluate the peri-procedural effects of warfarin treatment, we studied whether target INR was maintained, as well as the maintenance period of the therapeutic range. Quality of treatment was measured by time in therapeutic range (TTR) by using the Rosendaal method. Results: There were no thromboembolic events, but TEE examination at time of cardioversion showed a left atrial thrombus in three patients (2.8%). Bleeding complications after cardioversion occurred in 2 patients (1.9%). The average INR value at the time of cardioversion was $2.59{\pm}0.8$, and was within the therapeutic range in 83 patients (78%). Analysis of the patients in whom the value was within the therapeutic range twice consecutively showed that the ratio of TTR was 80% and the therapeutic range was maintained in 67 patients (63%) for an average of 4.90 weeks prior to cardioversion. Similarly, 76 patients (72%) had a stable INR within the therapeutic range for an average of 5.70 weeks and a mean TTR of 83%. Conclusion: Pharmacists significantly contributed to appropriate warfarin treatment with close monitoring during cardioversion. Likewise, active pharmacist monitoring and systemic management should be considered to reduce thromboembolism and bleeding complications in the peri-cardioversion period.

Study on the Steady-State and Dynamic Performance of Polymer Electrolyte Fuel Cells with the Changes of External and Self-Humidification Conditions (고분자 전해질 연료전지의 외부가습 및 지체가습 변화에 의한 정상상태 및 비정상상태 성능특성 연구)

  • Lee, Yong-Taek;Kim, Bo-Sung;Kim, Yong-Chan;Choi, Jong-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.196-202
    • /
    • 2007
  • The performance characteristics of the polymer electrolyte fuel cells (PEFCS) were investigated under various humidification conditions at steady-state and transient conditions. The PEFC studied in this study was characterized by I-V curves in the potentiostatic mode and EIS (electrochemical impedance spectroscopy). The I-V curves representing steady-state performance were obtained from OCV to 0.25 V, and the dynamic performance responses were obtained at some voltages. The effects of anodic external humidification were measured by varying relative humidity of hydrogen from 20% to 100% while dry air was supplied in the cathode. At the high voltage region, the performance became higher with the increase of the temperature, while at the low voltage region, the performance decreased with the increase of temperature. The EIS showed that ohmic losses were larger at the dry condition of membrane and the effects of mass transport losses increased remarkably when the external and self-humidification were high. The dynamic responses were also monitored by changing the voltage of the PEFC instantly. As the temperature increased, the current reached steady-state earlier. The self-humidification with the generated water delayed the stabilization of the current except for low voltage conditions.

The Vector Control with Compensating Unit Angle for the Robust Low Speed Control of Induction Motor (유도전동기의 강건한 저속 제어를 위한 단위각 보상 벡터 제어)

  • 원영진;박진홍
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.1
    • /
    • pp.90-98
    • /
    • 1998
  • This paper is to describe the improved vector control which can control the induction motor robustly in low speed. When the induction motor is drived with low speed, below 10 percent of the rated speed, an algorithm which can compensate the error of unit vector angle generated by the harmonics is proposed. Another algorithm which can be tuned to the rotor time constant so that nay be robust to the rotor parameter change in low speed and transient state was proposed. The ripple of flux and torque was reduced by the proposed vector control and then the stable output characteristics was obtained in low speed. When the input and output is sinusoidal, the proposed vector control, the direct vector control and the indirect vector control were analyzed and compared in the low speed characteristics. And each control characteristics is compared and analyzed in state of containing harmonics. The estimation and tunning performance of rotor time constant is confirmed with simulation. The whole control system is implemented by real hardware and experimented to compare the proposed vector control with the direct vector control. As a result of the experiment with two control methods in low speed, the torque ripple of the proposed vector control is improved by 45 percent than the direct vector control. And it is confirmed that the flux current ripple is reduced in 0.2 p.u. and torque current ripple is reduced in 0.6 p.u. It is confirmed that the rotor time constant by the estimation and the tunning algorithm is tunned by the real rotor time constant. Finally, it was confirmed that the validity and robustness for the proposed vector control in low speed existed.

  • PDF

The Research On the Energy Storage System Using SuperCapacitor (슈퍼커패시터를 적용한 에너지 저장시스템 설계에 관한 연구)

  • Kim, IL-Song
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.11
    • /
    • pp.215-222
    • /
    • 2018
  • In this paper, the research on the energy storage system adapting super-capacitor has been performed. The most advanced features compared to the conventional lead-acid battery systems is that it can obtain high power capability due to the super capacitor power characteristics. The suggested system can attain high power in short times and achieve high power quality improvements. The application areas are power quality improvement system, motor start power which requires high power during transient times. The energy conversion system consists of bi-directional converter and inverter and advantages of high speed, high power charging and discharging performances. The design steps for the two loop controller of the bi-directional inverter are suggested and verified by the experiment and manufacturing. The two loop controller design starts from linearized transfer function which is calculated from the state averaging model including state decoupling method. The current controller requirements are 20% overshoot and settling time and voltage controller are no overshoot and settling time which is 10 times longer than current controller. The design is verified from the step input response. The designed controllers have unity power factor characteristics and thus can improve the power quality of the grid. It also has fast response time and zero steady state error.

A Study on the Calculation of Optimal Compensation Capacity of Reactive Power for Grid Connection of Offshore Wind Farms (해상풍력단지 전력계통 연계를 위한 무효전력 최적 보상용량 계산에 관한 연구)

  • Seong-Min Han;Joo-Hyuk Park;Chang-Hyun Hwang;Chae-Joo Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.65-76
    • /
    • 2024
  • With the recent activation of the offshore wind power industry, there has been a development of power plants with a scale exceeding 400MW, comparable to traditional thermal power plants. Renewable energy, characterized by intermittency depending on the energy source, is a prominent feature of modern renewable power generation facilities, which are structured based on controllable inverter technology. As the integration of renewable energy sources into the grid expands, the grid codes for power system connection are progressively becoming more defined, leading to active discussions and evaluations in this area. In this paper, we propose a method for selecting optimal reactive power compensation capacity when multiple offshore wind farms are integrated and connected through a shared interconnection facility to comply with grid codes. Based on the requirements of the grid code, we analyze the reactive power compensation and excessive stability of the 400MW wind power generation site under development in the southwest sea of Jeonbuk. This analysis involves constructing a generation site database using PSS/E (Power System Simulation for Engineering), incorporating turbine layouts and cable data. The study calculates reactive power due to charging current in internal and external network cables and determines the reactive power compensation capacity at the interconnection point. Additionally, static and dynamic stability assessments are conducted by integrating with the power system database.

Construction and Tests of the Vacuum Pumping System for KSTAR Current Feeder System (KSTAR 전류전송계통 진공배기계 구축 및 시운전)

  • Woo, I.S.;Song, N.H.;Lee, Y.J.;Kwag, S.W.;Bang, E.N.;Lee, K.S.;Kim, J.S.;Jang, Y.B.;Park, H.T.;Hong, Jae-Sik;Park, Y.M.;Kim, Y.S.;Choi, C.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.483-488
    • /
    • 2007
  • Current feeder system (CFS) for Korea superconducting tokamak advanced research(KSTAR) project plays a role to interconnect magnet power supply (MPS) and superconducting (SC) magnets through the normal bus-bar at the room temperature(300 K) environment and the SC bus-line at the low temperature (4.5 K) environment. It is divided by two systems, i.e., toroidal field system which operates at 35 kA DC currents and poloidal field system wherein 20$\sim$26 kA pulsed currents are applied during 350 s transient time. Aside from the vacuum system of main cryostat, an independent vacuum system was constructed for the CFS in which a roughing system is consisted by a rotary and a mechanical booster pump and a high vacuum system is developed by four cryo-pumps with one dry pump as a backing pump. A self interlock and its control system, and a supervisory interlock and its control system are also established for the operational reliability as well. The entire CFS was completely tested including the reliability of local/supervisory control/interlock, helium gas leakage, vacuum pressure, and so on.

Characterization of an Ion Channel Prepared from Tomato Roots and Inhibitory Effects by Heavy Metal Ions (토마토 뿌리조직에서 분리한 이온채널의 중금속에 의한 저해)

  • Shin, Dae-Seop;Han, Min-Woo;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.47 no.4
    • /
    • pp.390-395
    • /
    • 2004
  • In order to characterize ion channels present in tomato roots, microsomes were incorporated into an artificial lipid bilayer arranged for electrophysiological analysis. Of the five different ion channels that could be found, a channel of 450 pS conductance was found most frequently. This channel displayed subconductance states of 450, 257 and 105 pS. All subconductance states showed linear current-voltage relationships. At positive holding potentials, high frequency of transient channel openings was observed; however, at negative potentials, the open times were long and open probability high. Po was 0.83 at -40 mV. When an additional 50 mM $K^+\;or\;Na^+$ was added to the cis side of bilayer, the reversal potentials shifted in the negative direction to near -10 mV. Thus, the 450 pS cation channel selects poorly between $K^+\;and\;Na^+$. In the presence of $100\;{\mu}M$ metal ions, the channel activity was severely inhibited by $La^{3+},\;Ba^{2+},\;and\;Zn^{2+}$, and Po was decreased to 0.2 or even less. However, $Al^{3+}\;and\;Cd^{2+}$ decreased the activity by only 20%. Interestingly, each metal ion showed different kinetics of channel inhibition. While $500\;{\mu}M\;La^{3+}$ inhibited the activities of all subconductance state, 1 mM $Zn^{2+}$ inhibited all except the 105 pS state. $Cd^{2+}$ changed the gating of the channel from a long-opening state to brief transient openings even at negative holding potentials. These data represent that the metal ions may have different binding sites on the channel protein and could be useful modulators and probes to investigate structural characteristics as well as the functional roles of the 450 pS channel on the root physiology.