• Title/Summary/Keyword: Current transient

Search Result 1,272, Processing Time 0.029 seconds

Acceptable Supply Air Conditions of Dedicated Outdoor Air System for a High-rise Apartment Building (초고층 공동주택 외기전담 시스템 기반 중앙 공급식 환기시스템의 적정 급기조건 설정)

  • Kim, Min-Hwi;Kim, Jin-Hyo;Kwon, Oh-Hyun;Jeong, Jae-Weon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.285-290
    • /
    • 2009
  • The main thrust of this paper is to investigate acceptable supply air conditions of a dedicated outdoor air system (DOAS) for highrise apartment buildings. As for a typical $132-m^2$ apartment unit, it was assumed that centralized DOAS-Ceiling Radiant Cooling Panel was installed. Transient behavior and control characteristics of each system were modeled numerically using a commercial equation solver program. The optimized dew point temperature of the DOAS was discussed on the basis of the ASHRAE standard 62.1-2007 and the current Korean ventilation standard for apartments. It was found that the optimized dew point temperature of the DOAS supply air accommodating total latent load of a space is $11-12^{\circ}C$ and the appropriate supply air temperature of the DOAS is $11-12^{\circ}C$ in cooling period and neutral temperature of $18-20^{\circ}C$ in intermediate period.

  • PDF

Modeling of Bi-directional DC/DC Converter for Connecting DC Distribution System using EMTP (EMTP를 이용한 직류배전계통 연계용 양방향 DC/DC 컨버터 모델링)

  • Han, Joon;Kim, Doo-Ung;Oh, Yun-Sik;Gwon, Gi-Hyeon;Noh, Chul-Ho;Jung, Tack-Hyun;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.615-621
    • /
    • 2014
  • With development of electrical power system, the DC distribution system has been considered as a promising technology to be used in the future smart distribution system. Among the various components comprising the DC distribution system, the bi-directional DC/DC converter is one of the most important equipment to interconnect between main power system and various renewable resources such as photovoltaic power generation, wind power generation, and electrical vehicles. In this paper, a bi-directional DC/DC converter based on three-phases interleaved method which is effective to reduce ripple of input current and output voltage is modeled using ElectroMagnetic Transient Program(EMTP), and the verification of modeled bi-directional DC/DC converter is conducted.

A Stable Black-Start Strategy for a Stand-Alone DC Micro-Grid

  • Cha, Jae-Hun;Han, Yoon-Tak;Park, Kyung-Won;Oh, Jin-Hong;Choi, Tae-Seong;Ko, Jae-Hun;MAHIRANE, Philemon;An, Jae-Yun;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.30-37
    • /
    • 2018
  • Unlike an AC system, a DC system does not cause problems with synchronization, stability, reactive power, system losses, and cost. However, more research is still required for the application of DC Systems. This paper proposes a stable black-start strategy for a stand-alone DC micro-grid, which consists of an energy storage system, photovoltaic generator, wind-turbine generator, diesel generator, and DC loads. The proposed method is very important for avoiding inrush current and transient overvoltage in the power system equipment during restoration after a blackout. PSCAD/EMTDC software was used to simulate, analyze, and verify the method, which was found to be stable and applicable for a stand-alone DC micro-grid.

Single Line-to-ground Fault Location and Information Modeling Based on the Interaction between Intelligent Distribution Equipment

  • Wang, Lei;Luo, Wei;Weng, Liangjie;Hu, Yongbo;Li, Bing
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1807-1813
    • /
    • 2018
  • In this paper, the fault line selection and location problems of single line-to-ground (SLG) fault in distribution network are addressed. Firstly, the adaptive filtering property for empirical mode decomposition is formulated. Then in view of the different characteristics showed by the intrinsic mode functions(IMF) under different fault inception angles obtained by empirical mode decomposition, the sign of peak value about the low-frequency IMF and the capacitance transient energy is chosen as the fault line selection criteria according to the different proportion occupied by the low-frequency components. Finally, the fault location is determined based upon the comparison result with adjacent fault passage indicators' (FPI) waveform on the strength of the interaction between the distribution terminal unit(DTU) and the FPI. Moreover, the logic nodes regarding to fault line selection and location are newly expanded according to IEC61850, which also provides reference to acquaint the DTU or FPI's function and monitoring. The simulation results validate the effectiveness of the proposed fault line selection and location methods.

EXPERIMENTAL APPROACH FOR EVALUATING EXHAUST FLOW DISTRIBUTION FOR PZEV EXHAUST MANIFOLDS USING A SIMULATED DYNAMIC FLOW BENCH

  • Hwang, I.G.;Myung, C.L.;Kim, H.S.;Park, S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.575-581
    • /
    • 2007
  • As current and future automobile emission regulations become more stringent, the research on flow distribution for an exhaust manifold and close-coupled catalyst(CCC) has become an interesting and remarkable subjects. The design of a CCC and exhaust manifold is a formidable task due to the complexity of the flow distribution caused by the pulsating flows from piston motion and engine combustion. Transient flow at the exhaust manifold can be analyzed with various computational fluid dynamics(CFD) tools. However, the results of such simulations must be verified with appropriate experimental data from real engine operating condition. In this study, an experimental approach was performed to investigate the flow distribution of exhaust gases for conventional cast types and stainless steel bending types of a four-cylinder engine. The pressure distribution of each exhaust sub-component was measured using a simulated dynamic flow bench and five-hole pitot probe. Moreover, using the results of the pitot tube measurement at the exit of the CCC, the flow distribution for two types of manifolds(cast type and bending type) was compared in terms of flow uniformity. Based on these experimental techniques, this study can be highly applicable to the design and optimization of exhaust for the better use of catalytic converters to meet the PZEV emission regulation.

A Novel Control Algorithm of a Three-phase Four-wire PV Inverter with Imbalance Load Compensation Function

  • Le, Dinh-Vuong;Kim, Chang-Soon;Go, Byeong-Soo;Park, Minwon;Yu, In-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1131-1137
    • /
    • 2018
  • In this paper, the authors suggest a new control algorithm for a three-phase four-wire photovoltaic (PV) inverter with imbalance load compensation function using conventional proportional-integral (PI) controllers. The maximum power of PV panel is calculated by the MPPT control loop. The reference varying signals of current controllers are transformed to two different rotating frames where they become constant signals. Then simple PI controllers are applied to achieve zero steady-state error of the controllers. The proposed control algorithm are modeled and simulated with imbalance load configuration to verify its performance. The simulation results show that the maximum PV power is transferred to the grid and the imbalance power is compensated successfully by the proposed control algorithm. The inverter has a fast response (~4 cycles) during the transient period. The proposed control algorithm can be effectively utilized to the three-phase four-wire inverter with imbalance load compensation function.

High-Performance Elevator Traction Using Direct Torque Controlled Induction Motor Drive

  • Arafa, Osama Mohamed;Abdallah, Mohamed Elsayed;Aziz, Ghada Ahmed Abdel
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1156-1165
    • /
    • 2018
  • This paper presents a detailed realization of direct torque controlled induction motor drive for elevator applications. The drive is controlled according to the well-known space vector modulated direct control scheme (SVM-DTC). As the elevator drives are usually equipped with speed sensors, flux estimation is carried out using a current model where two stator currents are measured and accurate instantaneous rotor speed measurement is used to overcome the need for measuring stator voltages. Speed profiling for a comfortable elevator ride and other supervisory control activities to provide smooth operation are also explained. The drive performance is examined and controllers' parameters are fine-tuned using MATLAB/SIMULINK. The blocks used for flux and torque estimation and control in the offline simulation are compiled for real-time using dSPACE Microlabox. The performance of the drive has been verified experimentally. The results show good performance under transient and steady state conditions.

The Decreasing of Surge Impedance of Grounding System by using Discharge (지중방전현상에 의한 접지시스템의 써지 임피던스의 저감)

  • 정재기;강지원;양병모;김홍필
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.55-61
    • /
    • 1998
  • Generally, in the calculation of ground resistance in the grounding system, the method measuring ground potential rise which is caused by low frequency source injection is used. But both lightning and surge impulse re very harmful to electric equipment. In this connection, this paper presents the results of an experimental investigation of transient behavior of ground impedances when lightening current is injected to the electric rod the experimental results are agreement with the theoretical analysis. In addition, the states on the behavior of ground electrodes under impulse currents due to lighting strokes are presented. And the impulse impedance reductions caused by discharge in the soils are presented.

  • PDF

A Study on Detection of High Impedance Fault in Low Voltage DC Distribution System using Filter based on Mathematical Morphology (수학적 형태학 기반의 필터를 이용한 저압직류 배전계통의 고저항 지락고장 검출에 관한 연구)

  • Oh, Yun-Sik;Noh, Chul-Ho;Kim, Doo-Ung;Gwon, Gi-Hyeon;Han, Joon;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.89-95
    • /
    • 2015
  • As a solution of improving the energy efficiency in power system, Low Voltage DC (LVDC) distribution systems different from conventional ones have been constantly researched. As in conventional AC distribution system, LVDC distribution system can suffer from High Impedance Fault (HIF) which may cause a failure of protective relay due to relatively low change in magnitude of fault current. In order to solve the problem, a scheme for detecting HIFs is presented in this paper. Closing Opening Difference Operation (CODO) based on Mathematical Morphology (MM), one of the MM-based filters, is utilized to make fault signals discriminable. To verify performance of the scheme, a simple LVDC distribution system is modeled by using ElectroMagnetic Transient Program (EMTP) software. Computer simulations according to various conditions are performed and comparison studies with a scheme using Wavelet Transform (WT) in an aspect of simulation time are also conducted.

Analysis of the Ground Impedance of Ground Grids Combined with the Carbon Ground Electrodes (탄소접지극이 병설된 접지그리드의 접지임피던스의 해석)

  • Lee, Bok-Hee;Um, Sang-Hyun;Kim, You-Ha;Lee, Kang-Soo;Jeon, Byung-Wook;Choi, Jong-Hyuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.36-42
    • /
    • 2013
  • This paper deals with the frequency-dependent ground impedance of ground grids combined with the carbon ground electrodes. Ground grids are generally valid for multipurpose grounding systems as well as lightning protection systems. The carbon ground electrodes may be supplementarily used to reduce the high frequency ground impedance and to improve the transient response to surge currents. The frequency-dependent ground impedances of ground grids combined with or without the carbon ground electrodes were measured and their simulations with due regard to frequency-dependent soil resistivity were implemented by using EMTP program and Matlab modeling. As a consequence, the ground impedance of ground grids combined with the carbon ground electrodes is significantly reduced when the test current is injected at the terminal of the carbon ground electrode. The measured and simulated data for the test ground grids fairly agree with each other. It was found that the proposed method of simulating the frequency-dependent ground impedance is distinguished. The simulation techniques of predicting accurately the ground impedances without actual measurements can be used in the design of grounding systems based on ground grids and the carbon ground electrodes.