• Title/Summary/Keyword: Current transient

Search Result 1,272, Processing Time 0.036 seconds

In-network Distributed Event Boundary Computation in Wireless Sensor Networks: Challenges, State of the art and Future Directions

  • Jabeen, Farhana;Nawaz, Sarfraz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2804-2823
    • /
    • 2013
  • Wireless sensor network (WSN) is a promising technology for monitoring physical phenomena at fine-grained spatial and temporal resolution. However, the typical approach of sending each sensed measurement out of the network for detailed spatial analysis of transient physical phenomena may not be an efficient or scalable solution. This paper focuses on in-network physical phenomena detection schemes, particularly the distributed computation of the boundary of physical phenomena (i.e. event), to support energy efficient spatial analysis in wireless sensor networks. In-network processing approach reduces the amount of network traffic and thus achieves network scalability and lifetime longevity. This study investigates the recent advances in distributed event detection based on in-network processing and includes a concise comparison of various existing schemes. These boundary detection schemes identify not only those sensor nodes that lie on the boundary of the physical phenomena but also the interior nodes. This constitutes an event geometry which is a basic building block of many spatial queries. In this paper, we introduce the challenges and opportunities for research in the field of in-network distributed event geometry boundary detection as well as illustrate the current status of research in this field. We also present new areas where the event geometry boundary detection can be of significant importance.

Performance verification on the Impedance Relay Method using Failure Simulator of AT Feeding System (AT 급전계통 고장 모의시험장치를 활용한 임피던스 계전방식의 성능검증)

  • Kim, Wan-il;Lee, Kye-Seung;Jung, No-Geon;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.325-330
    • /
    • 2018
  • In this paper, we investigated the impedance method for searching fault detection point in case of an accident in the AC electric railway AT feeding system. For this purpose, simulation circuit modeling and prototype hardware are made based on the known numerical analysis. As a result of simulation modeling of the feeding system based on the numerical analysis of the impedance method confirmed that the modeling was properly implemented with an average error rate of 0.07%. Also, as a result of fault event by hardware simulator, it was confirmed that the breaker operation time is shortened and the fault current is decreased while the voltage is close to the supply voltage in the transient state as the point of the fault accident moves away from the substation(SS).

An Analysis of the Ground Surface Potential Rise and Hazardous Voltages Caused by Impulse Currents (임펄스전류에 의한 대지표면전위상승 및 위험전압의 분석)

  • Lee, Bok-Hee;Lee, Kyu-Sun;Choi, Jong-Hyuk;Seong, Chang-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.117-123
    • /
    • 2011
  • Lightning and switching surges propagating through the grounding conductors lead to transient overvoltages, and electronic circuits in information technology systems are very susceptible to damage or malfunction from the electrical surges. Surge damages or malfunctions of electrical and electronic equipment may be caused by potential rises. To solve these problems, it is very important to evaluate the ground surface potential rises and hazardous voltages such as touch and step voltages at or near the grounding systems energized by electrical surges. In this paper, the performance of grounding systems against the surge current containing high frequency components on the basis of the actual-sized tests is presented. The ground surface potential rises and hazardous voltages depending on impulse currents for vertical or horizontal grounding electrodes are measured and analyzed. Also the touch and step voltages caused by the impulse currents are investigated. As a result, the ground surface potential rises, the touch and step voltages near the grounding electrodes are raised and the conventional grounding impedances are increased as the front time of the injected impulse currents is getting faster.

Analysis of Fire Accident on DC Electric Traction Vehicles Caused by Breakdown in the Line Breaker (회로 차단기 절연파괴로 인한 직류 전기철도 화재 사고사례 분석)

  • Park, Nam-Kyu;Song, Jae-Yong;Goh, Jae-Mo;Kim, Jin-Pyo;Nam, Jung-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.16-21
    • /
    • 2017
  • Fire or electrical problem while DC electric traction vehicle operation caused by various reasons can lead to not only suspension of the operation, but also severe aftermath such as massive casualty. In this paper, fire analysis on DC electric traction vehicle caused by electrical breakdown on line breaker, which is in connection with the power supply, is presented. When the electric arc, the by-product of frequent line breaker operation, is not fully diminished, it leads to electrical breakdown and fire. Especially, electrical breakdown can be easily induced by the open-and-close operation of inner contractor inside line breaker, eventually followed by ground fault and generation of transient current. Electric arc is consequent on the ground fault and acts as possible ignition source, leading to fire. Also, during the repetitive operation of the line breaker, the contactor is separated each other and some copper powder is generated, and the copper powder provided breakdown path, resulting in fire.

The Simulation Implementation on contact loss of high speed electric railway using a Power Line Disturbance simulator (전원외란 시뮬레이터를 이용한 고속전철 이선현상 모의 실험)

  • Kim, Jae-Moon;Kim, Yang-Soo;Chang, Chin-Young;Ahn, Jeong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2152_2153
    • /
    • 2009
  • In this study, the dynamic characteristic of a contact wire and pantograph suppling electrical power to high-speed trains are investigated from an electrical response point of view. To analysis power line disturbance by induced contact loss phenomenon for high speed operation, a hardware Simulator which considered contact loss between contact wire and the pantograph as well as contact wire deviation is developed. It is confirmed that a contact wire and pantograph model are necessary for studying the dynamic behavior of the pantograph system. One of the most important needs accompanied by increasing the speed of high-speed train is reduced that an arc phenomenon by loss of contact brings out EMI. In case of a high-speed train using electrical power, as comparison with diesel rolling stock, PLD(Power Line Disturbance) such as harmonic, transient voltage and current, EMI, dummy signal injection etc usually occurs. Throughout experiment, it is verified that an arc phenomenon is brought out for simulator operation and consequently conducted noise is flowed in electric circuit by power line disturbance.

  • PDF

Reduction of Power Disturbance by Contact Loss Phenomenon of a High Speed Electric Train Using Passive Filters (수동필터를 이용한 고속전철 이선현상에 의한 전원외란 저감)

  • Chang, Chin-Young;Jin, Kang-Hwan;Kang, Jeong-Nam;Park, Dong-Kyu;Kim, Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.206-211
    • /
    • 2010
  • Since high-speed train is a dynamic load in which electric power is externally supplied, contact loss between the catenary and pantograph occurs. This phenomena including vibrations generates frequently irregular arcs, which, in turn causes EMI. Thus it is very important to develop the approach to reduce arc phenomenon by contact loss, as speed of electric railway vehicle increases. In case of an electric railway vehicle using electrical power, compared with diesel rolling stock, Power Line Disturbance(PLD) such as harmonics, transient voltage and current, Electromagnetic Interference(EMI), and dummy signal injection etc usually occur. In this study, the dynamic characteristics of a contact wire and a pantograph suppling electrical power to high-speed train are investigated with an electrical response point. To implement power line disturbance induced by contact loss phenomenon for high speed train operation, a hardware simulator which considers contact loss between contact wire and pantograph as well as contact wire deviation is developed. It is confirmed by the experiments that contact loss effect is largely dependent on voltage conditions when the contact loss occurs. Also, a passive filter is designed to reduce power disturbance and the designed system is verified by experiment.

The High Efficiency Operating Characteristics of the Induction Motor for Extended Range Electric Vehicle Applications (확장영역 전기자동차 응용을 위한 유도전동기의 고효율 운전 특성)

  • Ryu, Doo-young;Shon, Jin-geun;Jeon, Hee-jong;Choi, Uk-don
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.273-279
    • /
    • 2016
  • In this paper, a high-performance control of the induction motor for electric car was implemented to escape dependence of the rare earth magnet. Proposed high-efficiency control algorithm is a Direct Rotor Field-Oriented Control method that is insensitive to the fluctuation of motor parameters. In the DRFOC method, we need to compensate fluctuation of stator transient inductance and magnetizing inductance caused by the magnetic saturation of induction motor in high-speed area. This paper proposes Back-EMF Observer based on stator current estimator of Luenberger style. Motor control system applied the Voltage Feedback Flux Weakening Control method for high-speed operation. The proposed algorithm was verified through tests by the power train of Extended Range Electric Vehicle consists of induction motor and differential gear.

Current status in molecular farming (분자농업의 현황 및 전망)

  • Kim, Tae-Geum;Yang, Moon-Sik
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.243-249
    • /
    • 2010
  • Molecular farming is production of pharmaceutically and industrially important proteins in plants. Plants and plant cell culture systems have been used as bio-factory to produce recombinant proteins such as monoclonal antibodies, enzymes, vaccines, hormones, interleukins, commercial enzymes and etc. The terms molecular farming, biofarming, molecular pharming, phytomanufacturing, recombinant or plant-made industrials, planta-pharma, plant bioreactors, plant biofactory, and pharmaceutical gardening are used interchangeably. Molecular farming can provide safe and inexpensive pharmaceutical proteins as well as commercial ones. In spite of several advantages of molecular farming such as safety and inexpensive cost, there are also a couple of drawbacks in the existing technology. One of them is low expression level of target gene in plants, which has been improved by optimizing gene-based codon usage, screening of strong promoters, expression of transcription factors, subcellular targeting of target proteins, chloroplast transformation, and transient expression using viral expression system (magnifection). Some plant-based commercial proteins have already been in markets and more than twenty plant-based pharmaceuticals have been in clinical trials, from that we can expect that several plant-based pharmaceutical proteins will be seen in the markets in the near future.

Potential risks of nerve conduction studies and needle electromyography

  • Yoon, Byung-Nam;Ahn, Suk-Won;Kim, Jee-Eun;Seok, Jin Myoung;Kim, Kwang-Kuk;Kwon, Ki-Han;Park, Kee Duk;Suh, Bum Chun;Lim, Young Min;Korean Society of Clinical Neurophysiology Education Committee
    • Annals of Clinical Neurophysiology
    • /
    • v.20 no.2
    • /
    • pp.66-70
    • /
    • 2018
  • Electrodiagnostic studies such as nerve conduction studies (NCS) and needle electromyography (EMG) provide important and complementary information for evaluating patients with suspected neuromuscular disorders. NCS and needle EMG are reasonably safe diagnostic investigations and are generally associated with only mild transient discomfort when performed by experienced physicians. However, there is the risk of complications in some patients, because NCS involve the administration of electric current and EMG involves inserting a needle percutaneously into muscle tissue. This article reviews the potential risks of NCS and needle EMG.

Study of EMI Suppression Method Applied on DC Motor Driver of Power Tail Gate (파워테일게이트의 DC모터구동회로에 적용된 EMI 저감기법에 대한 연구)

  • Kim, Yeong-Sik;Yoon, Yong-Soo;Jung, Hun;Gohng, Jun-Ho;Lee, Sang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • This paper presents electromagnetic interference(EMI) suppression method applied on the direct current(DC) motor driver for power tail gate control. EMI noise is generated by the fast switching of power devices connected to electric loads. It has become a matter of concern because of the vast increase in the number and sophistication of electronic system in automotive environment. The proposed EMI reduction method is based on the principle of reducing the transient speed of power devices by changing the parameters of the driver circuit related to the power MOSFET. In this paper, power losses were calculated by loss equations and thermal simulation was used to evaluate the effect on printed circuit board. Based on these results, the DC motor driver was fabricated and tested. The proposed method can help to design a DC motor driver which allows it to obtain an acceptable compromise between power losses and EMI.