• Title/Summary/Keyword: Current shape

Search Result 1,881, Processing Time 0.026 seconds

Process Development to Form Net-Shape Nosing Shells by the Backward Tracing Scheme of the Rigid-Plastic FEM and Its Experimental Confirmation (강-소성 유한요소법의 역추적기법을 이용한 정밀정형 쉘 노우징 부품의 성형공정 개발과 실험적 증명)

  • Kim, Sang-Hyeon;Lee, Jin-Hui;Im, Hak-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2118-2133
    • /
    • 1996
  • A preform is designed by the backward tracing scheme of the rigid-plastic finite element method(FEM) for net-shape shell nosing components without machining after forming. The current process of the shell nosing requires cost-consuming machining to produce final products. Here, the backward tracing scheme of the rigid-plastic FEM, a novel method for preform design of metal forming processes, derives a sound preform for net-shape shell nosing product. The current process is simulated by the rigid-plastic finite element analysis to check the metal flow involved in the forming with a trial preform and its modified preform. The two preforms are found to be inadequate for net-shape shell nosing product. The first application of the back ward tracing scheme derives a preform producing a not-shape shell nosing product. The first application of the backward tracing scheme derives a preform producing a net-shape product numerically, but it is difficult to be formed economically as a preform. Thus an improved preform is designed by the badkward tracing scheme, which is suitable for net-shape manufacturing of the shell nosing components in view of economy of production and forming characteristics of the product. The preform in the current process and a modified preform are confirmed by a series of experiments and the results give the same deformation with the numerical ones. Finally the newly designed preform by the FEM was experimentally proved to be adequate in obtaining net-shape products.

Effect of Heat Flux on the Melting Efficiency and Penetration Shape in TIG Welding (TIG 용접에서 열유속이 용융효율과 용입형상에 미치는 영향)

  • Oh, Dong-Soo;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.44-50
    • /
    • 2009
  • The characteristics of arc pressure, current density and heat flux distribution are important factors in understanding physical arc phenomena, which will have a marked effect on the penetration, size and shape of a weld in TIG welding. The purpose of this study is to find out the effect of the heat flux on the melting efficiency and penetration shape in TIG welding using the results of the previous investigators. The conclusions obtained permit to draw a proper method which derived the heat flux distributions by arc pressure distribution measurements, but previous researchers calculated heat flux and current distribution with the heat intensity measurements by the calorimetry. Heat flux of Ar gas arc was concentrated at the central part and distributed low from the arc axis to the radial direction, that of He mixing arc was lower than that of Ar gas, and it was wide distributed to radial direction. That showed a similar characteristic with the Nestor's by calorimetry calculated values. Throughout heat flux drawn in this study was discussed melting efficiency and penetration shape on Ar gas and He mixing gas arc.

A New Shape Adaptation Scheme to Affine Invariant Detector

  • Liu, Congxin;Yang, Jie;Zhou, Yue;Feng, Deying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1253-1272
    • /
    • 2010
  • In this paper, we propose a new affine shape adaptation scheme for the affine invariant feature detector, in which the convergence stability is still an opening problem. This paper examines the relation between the integration scale matrix of next iteration and the current second moment matrix and finds that the convergence stability of the method can be improved by adjusting the relation between the two matrices instead of keeping them always proportional as proposed by previous methods. By estimating and updating the shape of the integration kernel and differentiation kernel in each iteration based on the anisotropy of the current second moment matrix, we propose a coarse-to-fine affine shape adaptation scheme which is able to adjust the pace of convergence and enable the process to converge smoothly. The feature matching experiments demonstrate that the proposed approach obtains an improvement in convergence ratio and repeatability compared with the current schemes with relatively fixed integration kernel.

ECM Characteristics of Ni-Ti Shape Memory Alloy (Ni-Ti 형상기억합금의 전해가공의 특성)

  • 김동환;강지훈;박규열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.955-958
    • /
    • 2000
  • In this paper, the electro-chemical-machining characteristics of Ni-Ti Shape Memory Alloy(SMA) was investigated. From the experimental results, the optimal electro chemical machining conditions for satisfying the machining quality(fine surface & high recovery stress)might be confirmed. And it was concluded that optical electro chemical condition for Ni-Ti SMA could be obtained at approximately 100% current efficiency and high frequency pulse current.

  • PDF

Process Design in Shell Nosing for Net-Shape Product by the Backward Tracing Schme of the Rigid-Plastic FEM (유한요소법의 역추적기법을 활용한 정밀정형 노우징 부품의 성형 공정설계)

  • 김상현;이진희;강범수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.224-232
    • /
    • 1995
  • A process is designed by the backward tracing scheme of the rigid-plastic FEm for net-shape shell nosing component without machining after forming. The current process of the shell nosing industry requires cost-consuming machining to produce final product . The backward tracing scheme of the rigid-plastic FEM, a novel method in preform design of metal forming processes , derives a sound preform for net-shape shell nosing product . The current process is simulated to check the metal flow involved informing with a trial preform and its modified preform. It is found that the two preforms are not suitable for net-shape shell nosing product. Finally, a preform is desinged by the backward tracing scheme, which is suitable for net-shape manufacturing of the shell nosing component.

  • PDF

A Study on the Welding Current in Butt Joint P-GMA Welding with Acute Groove Angles (작은 그루브 각을 가지는 맞대기 P-GMA 용접에서의 용접전류에 관한 연구)

  • Kim, Ryoon-Han;Na, Suck-Joo;Kim, Cheol-Hee
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.55-60
    • /
    • 2010
  • The purpose of this paper is to propose a mathematical model of welding current for the P-GMAW by modifying the well known GMAW model. Welding power circuit is simply modeled as a RL electric circuit and solved as an ODE equation. The welding current depends on the joint shape, molten pool and welding parameters. To compare the molten pool effect to the welding current, CFD numerical simulation technique was adopted. Welding experiment is also conducted with the same welding parameters as used in numerical simulations to verify the proposed welding current model. The current model which is considered molten pool shape, is more fit to experiment result.

Effects of Electrode Shape on Electrode Life of Resistance Spot Welding of Mg Alloy (Mg 합금 저항 점 용접의 연속 타점 수명에 미치는 전극 형상의 영향)

  • Choi, Dongsoon;Kang, Moonjin;Ryu, Jaewook;Kim, Dongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.30-35
    • /
    • 2014
  • According to weight lightning trend of automobile body, necessity of resistance spot welding (RSW) of Mg alloy on automobile industry is increasing rapidly because of the highest specific strength among commercial metals. Mg alloy has low electric resistance and high thermal conductivity like as Al alloy, so that needs applying high current in short time when welding. Thick oxide film of Mg alloy pollutes the electrodes and makes partial current carrying paths when on welding. Partial current carrying paths signify excessive concentration of current. There can initiate expulsion easily and reduces electrode life rapidly. Generating partial current carrying paths and expulsions are influenced by shapes of electrode. Therefore, electrode life also influenced by shape. In this study, we perform life test of RSW electrode of radius type. Measure tensile shear load and nugget size every spot alternately. As a result, radius type electrode can extend life over twice as dome type electrode.

Permanent Magnet Eddy Current Analysis of SPM Synchronous Motors according to Magnet Shapes

  • Lee, Sun-Kwon;Kang, Gyu-Hong;Kim, Byoung-Woo;Hur, Jin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.398-402
    • /
    • 2014
  • This paper presents the comparison study of permanent magnet (PM) eddy current of concentrated winding type surface permanent magnet synchronous motor (SPMSM) with different rare-earth magnet shapes. The fractional slot winding having 10 poles and 12 slots is studied. The PM eddy current is analyzed to compare for each shape by 2 dimensional (2D) finite element analysis (FEA). The eddy current and their loss of particular position of PM as well as their distributions are displayed for each model. The effect of partly enlarged air-gap made by PM shape to PM eddy current is compared.

A Study on the Arc Characteristics in Butt Joint P-GMA Welding with Acute Groove Angles (작은 그루브 각을 가지는 맞대기 P-GMA 용접에서의 용접아크에 관한 연구)

  • Kim, Ryoon-Han;Na, Suck-Joo;Kim, Cheol-Hee
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.53-53
    • /
    • 2010
  • The purpose of this paper is to propose a mathematical model of welding current for the P-GMAW by modifying the well known GMAW model. Welding power circuit is simply modeled as a RL electric circuit and solved as an ODE equation. The welding current depends on the joint shape, molten pool and welding parameters. To compare the molten pool effect to the welding current, CFD numerical simulation technique was adopted. Welding experiment is also conducted with the same welding parameters as used in numerical simulations to verify the proposed welding current model. The current model which is considered molten pool shape, is more fit to experiment result.

  • PDF

Improved Design to reduce Eddy Current Loss in Retain Ring in Superconducting Machines

  • Lee, Sang-Ho;Jung, Jae-Woo;Sun, Tao;Hong, Jung-Pyo;Kim, Yeong-Chun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.2
    • /
    • pp.13-16
    • /
    • 2011
  • This paper describes the reduction method of eddy current loss generated into a retaining ring installed in wound-field superconducting machine. In order to suggest the reduction method of eddy current loss of the retaining ring, this paper is divided into three parts. Firstly, eddy current loss of prototype model is calculated. Secondly, eddy current loss versus material and shape of the retaining ring is compared. Finally, the material and the shape of the retaining ring to reduce coupling loss generated by a time-varying magnetic field are proposed. In this paper, eddy current loss is calculated by 3-dimensional transient analysis.