• 제목/요약/키워드: Current ripple control

검색결과 454건 처리시간 0.025초

Design and Control Method for Sub-module DC Voltage Ripple of HVDC-MMC

  • Gwon, Jin-Su;Park, Jung-Woo;Kang, Dea-Wook;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.921-930
    • /
    • 2016
  • This paper proposes a design and control method for a high-voltage direction current modular multilevel converter (HVDC-MMC) considering the capacitor voltage ripple of the submodule (SM). The capacitor voltage ripple consists of the line frequency and double-line-frequency components. The double line- frequency component does not fluctuate according to the active power, whereas the line-frequency component is highly influenced by the grid-side voltage and current. If the grid voltage drops, a conventional converter increases the current to maintain the active power. A grid voltage drops, current increment, or both occur with a capacitor voltage ripple higher than the limit value. In order to reliably control an MMC within a limit value, the SM capacitor should be designed on the basis of the capacitor voltage ripple. In this paper, the capacitor voltage ripple according to the grid voltage and current are analyzed, and the proposed control method includes a current limitation method considering the capacitor voltage ripple. The proposed design and control method are verified through simulation using PSCAD/EMTDC.

DCM Frequency Control Algorithm for Multi-Phase DC-DC Boost Converters for Input Current Ripple Reduction

  • Joo, Dong-Myoung;Kim, Dong-Hee;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2307-2314
    • /
    • 2015
  • In this paper, a discontinuous conduction mode (DCM) frequency control algorithm is proposed to reduce the input current ripple of a multi-phase interleaved boost converter. Unlike conventional variable duty and constant frequency control, the proposed algorithm controls the switching frequency to regulate the output voltage. By fixing the duty ratio at 1/N in the N-phase interleaved boost converter, the input current ripple can be minimized by ripple cancellation. Furthermore, the negative effects of the diode reverse recovery current are eliminated because of the DCM characteristic. A frequency controller is designed to employ the proposed algorithm considering the magnetic permeability change. The proposed algorithm is analyzed in the frequency domain and verified by a 600 W three-phase boost converter prototype that achieved 57% ripple current reduction.

단상 PVPCS 출력 전류의 리플 개선을 위한 노치 필터 및 피드 포워드 제어기 설계 (The Feed-forward Controller and Notch Filter Design of Single-Phase Photovoltaic Power Conditioning System for Current Ripple Mitigation)

  • 김승민;양승대;최주엽;최익;이영권
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.325-330
    • /
    • 2012
  • A single-phase PVPCS(photovoltaic power conditioning system) that contains a single phase dc-ac inverter tends to draw an ac ripple current at twice the out frequency. Such a ripple current may shorten passive elements life span and worsen output current THD. As a result, it may reduce the efficiency of the whole PVPCS system. In this paper, the ripple current propagation is analyzed, and two methods to reduce the ripple current are proposed. Firslyt, this paper presents notch filter with IP voltage controller to reject specific current ripple in single-phase PVPCS. The notch filter can be designed that suppress just only specific frequency component and no phase delay. The proposed notch filter can suppress output command signal in the ripple bandwidth for reducing output current THD. Secondly, for reducing specific current ripple, the other method is feed-forward compensation to incorporate a current control loop in the dc-dc converter. The proposed notch filter and feed-forward compensation method have been verified with computer simulation and simulation results obtained demonstrate the validity of the proposed control scheme.

  • PDF

브러시리스 직류 전동기의 토크 맥동 저감을 위한 전류 제어 방식에 관한 연구 (A Study on the Current Control Method for Torque Ripple Reduction of Brushless DC Motor)

  • 이광운;홍희정;박정배;여형기;유지윤
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.342-346
    • /
    • 1998
  • The brushless DC motor with trapezoidal back emfs has torque ripple due to phase commutation. The torque ripple generates noise and vibration and cause errors in position control so this makes the brushless DC motor less suitable for high performance servo applications. In this paper, we propose a new current control method to reduce the torque ripple due to commutation, when the unipolar PWM method is applied for the phase current control of brushless DC motor.

  • PDF

Mitigation of Low Frequency AC Ripple in Single-Phase Photovoltaic Power Conditioning Systems

  • Lee, Sang-Hoey;An, Tae-Pung;Cha, Han-Ju
    • Journal of Power Electronics
    • /
    • 제10권3호
    • /
    • pp.328-333
    • /
    • 2010
  • A photovoltaic power conditioning system (PV PCS) that contains single-phase dc/ac inverters tends to draw an ac ripple current at twice the output frequency. Such a ripple current perturbs the operating points of solar cells continuously and it may reduce the efficiency of the current based maximum power point tracking technique (CMPPT). In this paper, the ripple current generation in a dc link and boost inductor is analyzed using the ac equivalent circuit of a dc/dc boost converter. A new feed-forward ripple current compensation method to incorporate a current control loop into a dc/dc converter for ripple reduction is proposed. The proposed feed-forward compensation method is verified by simulation and experimental results. These results show a 41.8 % reduction in the peak-to peak ac ripple. In addition, the dc/ac inverter control system uses an automatic voltage regulation (AVR) function to mitigate the ac ripple voltage effect in the dc link. A 3kW PV PCS prototype has been built and its experimental results are given to verify the effectiveness of the proposed method.

다상 DC-DC 컨버터의 입력 전류 리플 저감 제어 알고리즘 (Input Current Ripple Reduction Algorithm for Interleaved DC-DC Converter)

  • 주동명;김동희;이병국
    • 전력전자학회논문지
    • /
    • 제19권3호
    • /
    • pp.220-226
    • /
    • 2014
  • Input current ripple and harmonic components of the power device are main causes of electromagnetic interference (EMI). Although the discontinuous conduction mode (DCM) operation can reduce harmonic components of the power device by reducing reverse recovery current of diode and turn-off voltage spikes of the switch, input current ripple increases due to high peak to peak inductor current. Therefore, in this paper, frequency control algorithm is proposed to reduce the input current ripple of DCM operated interleaved boost converter. In the proposed algorithm, duty ratio is fixed either 0.33 or 0.67 to minimize the input current ripple and the switching frequency is controlled according to operating conditions. 600 W 3-phase interleaved boost converter prototype system is built to verify proposed algorithm.

A New Three-Phase Current Modulation Method to Suppress the Commutation Torque Ripple of Brushless DC Motor

  • Wang, Zhiqiang;Yin, Shuai;Ma, Tiehua
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1925-1933
    • /
    • 2017
  • The brushless DC motor's commutation torque ripple is caused by inconsistency in the rate of phase current change. Thus, a method that considers armature resistance is proposed to modulate phase current. The three-phase control strategy, which involves the "open-phase conduction, off-phase pulse width modulation, and maintained non-commutation phase" technique, is applied during commutation at full-speed segments of the motor. Changes in each phase current are analyzed theoretically by establishing mathematical model based on phase current to determine the relative difference among shutdown phase, duty, and motor operating parameters. The turn-on and turn-off phase current change rates are made to be consistent to ensure less non-commutation phase current ripple, then the torque ripple is inhibited. The simulation results show that the phase commutation current and torque ripple coefficient of the proposed method are reduced from 56.9% and 55.5% to 6.8% and 6.1%, respectively. In the experiment system, the pulsation coefficient of the motor phase current is reduced from 40.0% to 16.7% at low speed and 50.0% to 18.8% at high speed. The simulation and experimental results show that the proposed control method significantly inhibits commutation current and torque in the full section.

브러시리스 직류전동기의 전환에 의한 전류 맥동 저감에 관한 연구 (A Study on Reduction of Current Ripple due to Commutation in Brushless DC motor)

  • 이광운;박정배;여형기;유지윤
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권9호
    • /
    • pp.490-497
    • /
    • 1999
  • This paper presents a novel current control method to reduce the current ripple due to commutation in brushless DC motor fed with unipolar PWM voltage source inverter. The proposed current control method can reduce the current ripple due to commutation in high speed range where the DC link voltage of the inverter is less than four times of the phase back-emf. The effectiveness of the proposed current control method is verified with digital simulations and experiments on the 250W brushless DC motor drive systems.

  • PDF

Brushless DC Motor에서 토크리플 저감을 위한 새로운 전류제어 기법 (A New Current Control Method for Torque Ripple Reduction on Brushless DC Motor)

  • 권경준;김상훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.575-578
    • /
    • 2003
  • This paper presents a new current control method to reduce torque ripple of Brushless DC Motor during commutation. In the proposed control strategy, the current slopes of rising and decaying phase during commutation is equalized by the compensation voltage. By adding the compensation voltage for it to the current controller output, the reduced torque ripple can be obtained. The simulation and experimental results show that the proposed method reduces the torque and the current ripples significantly.

  • PDF

고조파 전류를 이용한 영구자석형 동기 전동기의 토크 리플 저감 (Torque Ripple Reduction for Permanent Magnet Synchronous Motor using Harmonic Current Injection)

  • 권순오;이정종;이근호;홍정표
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1930-1935
    • /
    • 2009
  • This paper deals with the torque ripple reduction of permanent magnet synchronous motor using harmonic current injection. Torque ripple of electric motor reduces system stability and performances, therefore efforts to reduce torque ripple are exerted in the design process. Torque ripple can be reduced by appropriate pole/slot combination, skew of rotor or stator, design of magnetic circuit, etc. In addition, torque ripple can be also reduced by input voltage and current, and many researches have been conducted to reduce torque ripple for six-step drive. Torque ripple reduction for current vector controlled permanent magnet synchronous motor also have been conducted and verified by investigating back emf wave form. Torque ripple reduction in this paper started from getting torque profile according to input current and electrical angle calculated by FEA, then instantaneous currents at each electrical angles for constant torque are calculated and applied to experiments. Therefore, 0% of torque ripple can be obtained theoretically with harmonic current injection. In order to maximize the effect of torque ripple reduction, a BLDC motor having high harmonic component of back emf is chosen. With sinusoidal current drive, over 100% of torque ripple is obtained initially, then 0.5 % of torque ripple is obtained by FEA using harmonic current injection. The effect is verified by experiment and the presented method can be effectively applicable to Electric Power Steering(EPS).