• Title/Summary/Keyword: Current limiting element

Search Result 111, Processing Time 0.021 seconds

Quench distributions in a YBCO film unit for curret limiting under magnetic field (YBCO 박막형 한류소자의 외부 자기장에 대한 퀜치 의존성)

  • Park, K.B.;Choi, H.S.;Kim, H.R.;Hyun, O.B.;Hwang, S.D.;Ryu, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.760-761
    • /
    • 2001
  • We have studied quench characteristics for current limiting elements of YBCO films in applied fields of 0 - 130 mT. The films were deposited on sapphire substrates and covered by gold top layer. The current limiting element consists of 2 mm wide YBCO stripes connected in series. The electric field - current density (E-J) measurements showed that the presence of applied magnetic fields induces uniform quench distribution for the stripes, otherwise non-uniform quenches were observed. We suggest that suppressing the critical current by increased fields due to fault current effectively forced the stripes of higher Jc(0) to quench, resulting in equalizing quench times.

  • PDF

Operating characteristics of a superconducting DC circuit breaker connected to a reactor using PSCAD/EMTDC simulation

  • Kim, Geon-woong;Jeong, Ji-sol;Park, Sang-yong;Choi, Hyo-sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.51-54
    • /
    • 2021
  • The DC system has less power loss compared to the AC system because there is no influence of frequency and dielectric loss. However, the zero-crossing point of the current is not detected in the event of a short circuit fault, and it is difficult to interruption due to the large fault current that occurs during the opening, so the reliability of the DC breaker is required. As a solution to this, an LC resonance DC circuit breaker combined a superconducting element has been proposed. This is a method of limiting the fault current, which rises rapidly in case of a short circuit fault, with the quench resistance of the superconducting element, and interruption the fault current passing through the zero-crossing point through LC resonance. The superconducting current limiting element combined to the DC circuit breaker plays an important role in reducing the electrical burden of the circuit breaker. However, at the beginning of a short circuit fault, superconducting devices also have a large electrical burden due to large fault currents, which can destroy the element. In this paper, the reactor is connected to the source side of the circuit using PSCAD/EMTDC. After that, the change of the fault current according to the reactor capacity and the electrical burden of the superconducting element were confirmed through simulation. As a result, it was confirmed that the interruption time was delayed as the capacity of the reactor connected to the source side increased, but peak of the fault current decreased, the zero-crossing point generation time was shortened, and the electrical burden of the superconducting element decreased.

Improvement of Current Limiting and Recovery Characteristics in Series Connection Type SFCL with Added Third Winding (3차권선이 추가된 직렬연결형 초전도한류기의 전류제한 및 회복 특성 향상)

  • Ko, Seok-Cheol;Han, Tae-Hee;Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.62-68
    • /
    • 2014
  • The series connection type superconducting fault current limiter (SFCL) with added third winding, which was magnetically coupled in one iron core, was proposed. The proposed SFCL was expected to be more improved by just adding third winding into the conventional series connection type SFCL with two coils. To analyze the contribution of the third winding for the current limiting and the recovery characteristics of the SFCL, the short-circuit tests for the series connection type SFCL with the added third winding were performed together with the analysis on its electrical equivalent circuit. From the comparative analysis on the amplitude of the limited fault current and the power burden of the high-TC superconducting (HTSC) element comprising this SFCL, the improved current limiting and recovery characteristics of the series connection type SFCL using the third winding could be confirmed.

Increase of Operational Current in a SFCL using Series or Parallel Coupling of Coils (코일의 직.병렬결합을 이용한 초전도 사고전류제한기의 동작전류 증가)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.46-51
    • /
    • 2007
  • The fault current limiting characteristics of superconducting fault current limiter(SFCL) using magnetic coupling of two coils were investigated. This SFCL consists of a high-TC superconducting(HTSC) element and two coils with series or parallel connection on the same iron. In normal time, the inner magnetic fluxes generated by two coils are canceled in case that the HTSC element keeps superconducting state. However, in case that the resistance of the HTSC element happens by a short-circuit the magnetic fluxes, not cancelled, induce the voltages across two coils and the fault current can be limited by the impedance of this SFCL. This SFCL has the merit that the operational current of SFCL can be increased higher than the critical current of the superconducting element by adjusting the inductance ratio between two coils. To confirm its operation, the circuit for the fault simulation was constructed. From the measured voltage and current of the SFCL, it was confirmed that the operating current of this SFCL increased more than that of HTSC element's independent operation.

Comparison of Operating Characteristics between Flux-lock Type and Resistive Type Superconducting Fault Current Limiters (자속구속형과 저항형 초전도 전류제한기의 특성비교)

  • Park, Hyoung-Min;Lim, Sung-Hun;Park, Chung-Ryul;Chol, Hyo-Sang;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.363-369
    • /
    • 2005
  • we compared the operating characteristics between flux-lock type and resistive type superconducting fault current limiters(SFCLs). Flux-lock type SFCL consists of two coils, which are wound in parallel each other through an iron core, and a high-Tc superconducting(HTSC) element is connected with coil 2 in series. The the flux-lock type SFCL can be divided into the subtractive polarity winding and the additive polarity winding operations according to the winding directions between the coil 1 and coil 2. It was confirmed from experiments that flux-lock type SFCL could improve both the quench characteristics and the transport capacity compared to the resistive type SFCL, which means, the independent operation of HTSC element.

Voltage-Current Characteristics According to Fault Period of Flux-Lock SFCL with subtractive polarity winding (감극결선용 자속구속형 전류제한기의 사고주기별 전압전류 특성)

  • Han, Tae-Hee;Hwang, Jong-Sun;Cho, Yong-Sun;Park, Hyoung-Min;Nam, Guong-Hyun;Lee, Na-Young;Choi, Hyo-Sang;Lim, Sung-Hun;Chung, Dong-Chul;Choi, Myoung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.101-102
    • /
    • 2006
  • We investigated the characteristics of flux-lock type superconducting fault current limiter (SFCL) by the fault cycles. Since the recovery characteristics of a superconducting element in the flux-lock type SFCL were dependent on the winding' direction between two coils, the analysis for the recovery characteristics of this type SFCL together with the current limiting characteristic is necessary to apply it to power system. As the fault cycles was increased from 1 cycle to 5 cycles, the initial limiting current ($I_{ini}$) and quench characteristic were mostly same. As the fault period increases, the recovery time of the superconducting element increases. The consumed energy and recovery characteristics in a superconducting element show the same tendency.

  • PDF

A Study on Combination Technology of a Transformer and a Superconducting Fault Current Limiter (변압기와 초전도한류기의 결합기술 연구)

  • Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.330-334
    • /
    • 2010
  • We tried to combine a transformer with a superconducting element and investigated the current limiting characteristics. When a superconducting element was connected to third winding of the transformer, the fault current was limited to about 90 % effectively. The fault current and consumption power were able to be controlled by the turn's ratio of secondary and third windings. It gives flexibility of the rating of a transformer in the power grid. As a result, power burden of a superconducting element was reduced by the decrease of turn's ratio in third winding of a transformer. It was because the voltage behavior of a superconducting element was dependent on turn's ratio of a transformer while the current characteristic was independent.

On the Current Limiting Characteristics and Parameters of Superconducting Fault Current Limiter Introduced to 345kV Electric Power System due to Resistive-Type, Reactive-Type (유도형과 저항형 초전도한류기의 파라메타를 고려한 전력계통도입효과의 분석 및 고찰)

  • 홍원표;김용학;전영환;이승학
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.285-290
    • /
    • 2002
  • Power systems are becoming larger and larger for meeting electric power demand. Therefore, the over-currents resulting from contingencies such short circuits are increasing higher. The Maximum short circuit current of modern power system is becoming so large that circuit breaker are not expected th be able to shut down the current in the future. In order to cut over-currents, a system composed of a superconducting fault current limiter(SFCL) and traditional breaker seems to provide a promising solution for future power operation. In present paper, three line-to-ground fault is assumed to happen at the center of 345kV transmission lines in a large capacity electric power system The superconducting fault current limiter was represented using a commutation type, which consists of a non-inductive superconducting coil and current limiting element(resistor or reactor). The introduction merits of the SFCL were investigated quantitatively by RTDS/EMTDC from the viewpoint of current limiting performance, the prevention of the voltage drop at the load bus and comparison characteristics for two type SFCL. Desired design specification and operation parameters of SFCL were also given qualitatively by the performance evaluation of the two type SFCL in the power system.

  • PDF

Analysis on the Protective Coordination with Hybrid Superconducting Fault Current Limiter (반주기 이후 동작 하이브리드 초전도 전류제한기와 보호기기 협조 분석)

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul;Choi, Jong-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1832-1837
    • /
    • 2011
  • The fault current has increased due to the large power demand in power distribution system and network distribution system. To protect the power system effectively from the increased fault current, the superconducting fault current limiter (SFCL) has been notified. However, the conventional SFCL has some problems such as cost, operation, recovery, loss. To solve some problems, the hybrid superconducting fault current limiter using the fast switch was proposed. However, hybrid SFCL also has a problem that is protection coordination in power distribution system with hybrid SFCL. In this paper, the fault current limiting characteristics of hybrid SFCL with first half cycle non-limiting operation according to the fault angle, the resistance of superconducting element, and the magnitude of Current Limit Resistor (CLR) which are the components of hybrid SFCL were analyzed through the experiments.

Analysis on Quench Recovery Dependence of A Flux-Lock Type SFCL According to the Winding Directions (결선방향에 따른 자속구속형 전류제한기의 퀜치 회복 의존도 해석)

  • Jung, Su-Bok;Cho, Yong-Sun;Choi, Myoung-Ho;Choi, Hyo-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.113-117
    • /
    • 2008
  • We investigated the current limiting and the recovery characteristics of a flux-lock type superconducting fault current limiter(SFCL) according to the winding directions. The flux-lock type SFCL consists of two coils. The primary coil was wound in parallel to the secondary coil through an Iron core, and the secondary coil was connected with the superconducting element in series. We have changed the winding direction of coils to compare the resistive type SFCL with the flux-lock type SFCL. The current limiting and the recovery characteristics were dependent on the winding direction. The quenching time in the additive polarity winding was faster than that of the subtractive polarity winding or the resistivity type. A consumed energy in a superconducting element was represented as $W= VIt=I^2Rt$. We found that there was a difference in the consumed energies in accordance with winding types because of differences in voltages imposed on a superconducting element in accordance with a winding direction.