• Title/Summary/Keyword: Current Source Direction

Search Result 100, Processing Time 0.027 seconds

Mitigation of steel corrosion in concrete by electrochemical chloride extraction at the AI-supporting electric source

  • Jiseok Kim;Ki Yong Ann;Woongik Hwang
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.631-642
    • /
    • 2024
  • The present study concerns the corrosion mitigation of electrochemical chloride extraction (ECE) in concrete structure. Concrete specimen was fabricated with 5.0% chloride in cast, while the other specimen was exposed to 4.0M NaCl solution for 1 year to accelerate corrosion of steel. Then, the ECE was applied to the concrete specimen with 1000 mA/m2 of the current density for 2, 4 and 8 weeks, respectively. During the ECE, the corrosion current density and corrosion potential were regularly monitored. As a result, the ECE was very effective in mitigating the degree of corrosion on the steel surface. The corrosion current density was significantly reduced from thousands to decades mA/m2, while the corrosion potential was mostly shifted to positive direction. Assuming that the corrosion starts at 1.0 mA/m2 of the corrosion current density or/and -275 mV vs SCE of the corrosion potential, the ECE could not fully achieve the repassivation of the steel, although its degree was lowered more or less depending on the duration of the treatment and type of chloride contamination. A visual examination confirmed that an increase in the duration of the treatment could lower the rust formation, but never fully removed all rust stains.

Numerical Simulation of Three-Dimensional Wave-Current Interactions Due to Permeable Submerged Breakwaters by Using olaFLOW (olaFLOW를 활용한 투과성잠제에 의한 3차원적 파-흐름의 수치시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.4
    • /
    • pp.166-179
    • /
    • 2018
  • This study aims at numerically investigating the water-surface characteristics such as wave height distribution depending on the current direction around the three-dimensional permeable submerged breakwaters in wave-current coexisting field which has not been considered in detail so far. In addition, the characteristics of the velocity field including the average flow velocity, longshore current and turbulent kinetic energy, which act as the main external forces of formation of salient, are also examined. For numerical analysis, olaFlow which is open source code of CFD was used and the numerical tests included different types of target waves, both regular waves and irregular waves. Numerical results indicated that wave height variation with wave following or opposing a current behind the submerged breakwater is closely related to turbulent kinetic energy. Furthermore, it was found that weaker longshore currents are formed under wave-current coexisting field compared to the non-current conditions, and transport flow is attenuated. As a result, it was possible to understand the influence of current existence and direction (following and opposing) on the formation of the salient formed behind the submerged breakwaters.

Minimize Reactive Power Losses of Dual Active Bridge Converters using Unified Dual Phase Shift Control

  • Wen, Huiqing;Su, Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.654-664
    • /
    • 2017
  • This paper proposed an unified dual-phase-shift (UDPS) control for dual active bridge (DAB) converters in order to improve efficiency for a wide output power range. Different operating modes of UDPS are characterized with respect to the reactive current distribution. The proposed UDPS has the same output power capability with conventional phase-shift (CPS) method. Furthermore, its implementation is simple since only the change of the leading phase-shift direction is required for different operating power range. The proposed UDPS control can minimize both the inductor rms current and the circulating reactive current for various voltage conversion ratios and load conditions. The optimal phase-shift pairs for two bridges of DAB converter are derived with respect to the comprehensive reactive power loss model, including the reactive components delivered from the load and back to the source. Simulation and experimental results are illustrated and explained with details. The effectiveness of the proposed method is verified in terms of reactive power losses minimization and efficiency improvement.

Current Effect on the Motion and Drift Force of Cylinders Floating in Waves (주상체(柱狀體)의 운동(運動) 및 표류력(漂流力)에 미치는 해류(海流)의 영향(影響))

  • Sei-Chang,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.4
    • /
    • pp.25-34
    • /
    • 1986
  • A two-dimensional linear method has been developed for the motion and the second-order steady force arising from the hydrodynamic coupling between waves and currents in the presence of a body of arbitrary shape. Interaction between the incident wave and current in the absence of the body lies in the realm beyond our interest. A Fredholm integral equation of the second kind is employed in association with the Haskind's potential for a steadily moving source of pulsating strength located in or below the free surface. The numerical calculations at the preliminary stage showed a significant fluctuation of the hydrodynamic forces on the surface-piercing body. The problem is approximately solved by using the asymptotic Green function for $U^2{\rightarrow}0$. The original Green function, however, is applied for the fully submerged body. Numerical calculations are made for a submerged and for a half-immersed circular cylinder and extensively for the mid-ship section of a Lewis-form. Some of the results are compared with other analytical results without any available experimental data. The current has strong influence on roll motion near resonance. When the current opposes the waves, the roll response are generally negligible in the low frequency region. The current has strong influence on roll motion near resonance. When the current opposes the wave, the roll response decreases. When the current and wave come from the same direction, the roll response increases significantly, as the current speed increases. The mean drift forces and moment on the submerged body are more affected by current than those on the semi-immersed circular cylinder or on the ship-like section in the encounter frequency domain.

  • PDF

Radiation characteristics of A Circular Loop antenna In Moving Media (운동매질내에서의 Circular Loop Antenna의 개체특성)

  • 최병하
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.7 no.3
    • /
    • pp.12-18
    • /
    • 1970
  • In this paper, the radiation characteristics of a Circular Loop Antenna is studied in a moving homogeneous, isotropic and linear media with a constant velocity much less than the speed of light. In Stuffing the radiation characteristics, Srst vector potential on the loop antenna is derived in the moving media by appling Maxwell-Minkowaski's theory. Next, using the derived relations, the electric and magnetic Seld is calculated for the spec-i Sed wave length ana velocity of the media. The Seld patterns in the moving media are compared with those of stationary media. We find that the intensity of the field is reduced in the direction of the media velocity and increased in the opposite direction only for the component parallel with the plane of the antenna. The deviation from the stationary media is proportional to the velocity of the media and the frequency of source current.

  • PDF

Operation characteristics of IGZO thin-film transistors (IGZO 박막트랜지스터의 동작특성)

  • Lee, Ho-Nyeon;Kim, Hyung-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1592-1596
    • /
    • 2010
  • According to the increase of the channel length with fixed width/length, characteristic curves of drain current as a function of gate bias voltage of indium gallium zinc oxide (IGZO) thin-film transistors moved to a positive direction of gate voltage, and field-effect mobility decreased. In case of fixed length and width of channel, field-effect mobility was lower and subthreshold slope was larger when drain bias voltage was higher. Due to large work function of IGZO, band bending at the junction region between IGZO channel and source/drain electrodes was expected to be in opposite direction to that between silicon and metal electrodes; this could explain the above results.

Design and Lithographic Fabrication of Elliptical Zone Plate Array with High Fill Factor

  • Anh, Nguyen Nu Hoang;Rhee, Hyug-Gyo;Ghim, Young-Sik
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • An elliptical zone plate (EZP) array is important in off-axis optical systems because it provides two advantages. First, the residual beam and the main source are not focused in the same direction and second, the light from the observation plane is not reflected back towards the beam source. However, the fill factor of the previous EZP array was about 76% which was a little low. Hence, this EZP array could not collect the maximum amount of illumination light, which affected the overall optical performance of the lens array. In this study, we propose a new EZP array design with a 97.5% fill factor used in off-axis imaging system for enhancement of brightness and contrast. Then, direct laser lithography was used to fabricate the high fill factor EZP array by moving the XY linear stage of the system in a zigzag motion. The imaging properties of the proposed EZP array were experimentally verified at the focal plane and compared with the previous model.

Multi-Step Commutation and Control Policies for Matrix Converters

  • Hofmann W.;Ziegler M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.795-802
    • /
    • 2001
  • The commutation and control in matrix converters is more complicated as in voltage source converters. Natural freewheeling paths do not exist and the theoretic absent storage elements result in a direct coupled system of load and line currents as well as voltages. The paper offers an overview about staggered commutation and control policies in matrix converters. Based on the knowledge about load current direction and the signs of the line to line input voltages different multi-step commutation policies were derived. This paper examines the application of that policies in the case of space vector modulation and direct control methods with the focus on the resulting effects to the reference output voltage deviation.

  • PDF

A Study On the Effects of Velocity Staur Velocity Saturation on the Mosfet Devices (CARRIER속도 포화가 MOSFET소자특성에 미치는 영향에 관한 연구)

  • Park, Young-June
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.6
    • /
    • pp.424-429
    • /
    • 1987
  • It has been observed that the reduction rate of the inversion layer carrier mobility due to the increase of the longitudinal electric field(drain to source direction) decreases as the transverse electric field increases. The effects of this physicar phenomenon to the I-V characteristics of the short channel NMOSFET are studied. It is shown that these effects increase the drain Current in the saturatio region, which agrees with the genarally observed decrepancy between the experimental I-V charateristics and the I-V modeling which dose not include this physical phenomenon. Also it is shown that this effect becomes more important when the device channel length decreases and the device operates in the high electric field range.

  • PDF

Develpment of Textile-based Organic Solar Cell

  • Lee, Seung-U;Kim, Yeong-Min;Jeon, Ji-Hun;Lee, Yeong-Hun;Divij, Bhatia;Choe, Deok-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.460-460
    • /
    • 2014
  • Organic photovoltaic cells (OPV) have been extensively studied due to their unique properties such as flexibility, light-weight, easy processability, cost-effectiveness, and being environmental friendly. These advantages make them an attractive candidate for application in various novel fields and promising development with new features. Photovoltaic cell-integrated textiles have greatly attractive features as a power source for the smart textile solutions, and OPV is most ideal form factor due to advantage of flexibility. In this study, we develop a textile-based OPV through various experimental methods and we suggest the direction for the design of the photovoltaic textile. We used a textile electrode and tried to various layouts for textile-based OPV. Finally, we determined the contact area by using Hertzian theory for the calculation of power conversion efficiency (PCE). Based on the results of calculation, the short circuit current density, Isc, was $13.11mA/cm^2$ under AM 1.5condition and the PCE was around 2.5%.

  • PDF