DOI QR코드

DOI QR Code

Mitigation of steel corrosion in concrete by electrochemical chloride extraction at the AI-supporting electric source

  • Jiseok Kim (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Ki Yong Ann (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Woongik Hwang (Department of Civil and Environmental Engineering, Hanyang University)
  • Received : 2023.06.23
  • Accepted : 2023.10.18
  • Published : 2024.06.25

Abstract

The present study concerns the corrosion mitigation of electrochemical chloride extraction (ECE) in concrete structure. Concrete specimen was fabricated with 5.0% chloride in cast, while the other specimen was exposed to 4.0M NaCl solution for 1 year to accelerate corrosion of steel. Then, the ECE was applied to the concrete specimen with 1000 mA/m2 of the current density for 2, 4 and 8 weeks, respectively. During the ECE, the corrosion current density and corrosion potential were regularly monitored. As a result, the ECE was very effective in mitigating the degree of corrosion on the steel surface. The corrosion current density was significantly reduced from thousands to decades mA/m2, while the corrosion potential was mostly shifted to positive direction. Assuming that the corrosion starts at 1.0 mA/m2 of the corrosion current density or/and -275 mV vs SCE of the corrosion potential, the ECE could not fully achieve the repassivation of the steel, although its degree was lowered more or less depending on the duration of the treatment and type of chloride contamination. A visual examination confirmed that an increase in the duration of the treatment could lower the rust formation, but never fully removed all rust stains.

Keywords

Acknowledgement

The authors would like to thank the National Research Foundation of Korea (Grant number: 2020R1A2C3012248) for their support in finance.

References

  1. Abdelaziz, G.E., Abdelalim, A.M.K. and Fawzy, Y.A. (2009), "Evaluation of the short and long-term efficiencies of electro-chemical chloride extraction", Cement Concrete Res., 39(8), 727-732. https://doi.org/10.1016/j.cemconres.2009.05.015.
  2. ACI 365.1R-17 (2017), Report on Service Life Prediction, American Concrete Institute, Farmington Hills, MI, USA.
  3. Birnin-Yauri, U.A. and Glasser, F.P. (1998), "Friedel's salt, Ca2Al(OH)6(Cl,OH).2H2O: Its solid solutions and their role in chloride binding", Cement Concrete Res., 28(12), 1713-1723. https://doi.org/10.1016/S0008-8846(98)00162-8.
  4. Broomfield, J.P. (2022), Personal Communication.
  5. Broomfield, J.P. (2010), "Electrochemical treatments and service life prediction", Handbook of Concrete Durability, Middleton Publishing Inc., Haslemere, UK.
  6. Broomfield, J.P. (2013), Cathodic Protection of Steel in Concrete and Masonry, 2nd Edition, CRC Press, London, UK.
  7. BS EN 14038-1:2016 (2020), Electrochemical Realkalisation and Chloride Extraction Treatments for Reinforced Concrete - Part 1 Realkalisation, British Standards Institution, London, UK.
  8. BS EN 14038-2:2020 (2020), Electrochemical Realkalisation and Chloride Extraction Treatments for Reinforced Concrete - Part 2 Chloride Extraction, British Standards Institution, London, UK.
  9. Buenfeld, N.R. and Broomfield, J.P. (2000), "Influence of electrochemical chloride extraction on the bond between steel and concrete", Mag. Concrete Res., 52(2), 79-91. https://doi.org/10.1680/macr.2000.52.2.79.
  10. Canon, A., Garces, P., Climent, M.A., Carmona, J. and Zornoza, E. (2013), "Feasibility of electrochemical chloride extraction from structural reinforced concrete using a sprayed conductive graphite powder-cement paste as anode", Corros. sci., 77, 128-134. https://doi.org/10.1016/j.corsci.2013.07.035.
  11. Chang, C.C., Yeih, W., Chang, J.J. and Huang, R. (2014), "Effects of stirrups on electrochemical chloride removal efficiency", Constr. Build. Mater., 68, 692-700. https://doi.org/10.1016/j.conbuildmat.2014.06.091.
  12. Chen, Q., Jiang, Z., Zhu, H., Ju, J.W., Yan, Z. and Li, H. (2018), "The effective properties of saturated concrete healed by EDM with the ITZs", Comput. Concrete, 21(1), 67-74. https://doi.org/10.12989/cac.2018.21.1.067.
  13. Damrongwiriyanupap, N., Li, L. and Xi, Y. (2013), "Coupled diffusion of multi-component chemicals in nonsaturated concrete", Comput. Concrete, 11(3), 201-222. https://doi.org/10.12989/cac.2013.11.3.201.
  14. Elsener, B. (2008), "Long-term durability of electrochemical chloride extraction", Mater. Corros. 59(2), 91-97. https://doi.org/10.1002/maco.200804165.
  15. Elsener, B., Molina, M. and Bohni, H. (1993), "The electrochemical removal of chlorides from reinforced concrete", Corros. Sci., 35(5-8), 1563-1570. https://doi.org/10.1016/0010-938X(93)90385-T.
  16. Fajardo, G., Escadeillas, G. and Arliguie, G. (2006), "Electrochemical chloride extraction (ECE) from steel-reinforced concrete specimens contaminated by "artificial" seawater", Corros. Sci., 48(1), 110-125. https://doi.org/10.1016/j.corsci.2004.11.015.
  17. Fengyin, D., Zuquan, J., Tiejun, Z. and Xueyan D. (2018), "Electrochemical chloride extraction from corrosion-resistant steel bar-reinforced concrete", Int. J. Electrochem. Sci., 13(7), 7076-7094. https://doi.org/10.20964/2018.07.79.
  18. FHWA-HRT-10-069 (2011), Long-Term Effects of Electrochemical Chloride Extraction on Laboratory Specimens and Concrete Bridge Components, Federal Highway Administration Research and Technology, Washington, D.C., USA.
  19. Glass, G.K. (1986), "The effect of a change in surface conditions produced by anodic and cathodic reaction on the passivation of mild steel", Corros. Sci., 26(6), 441-454. https://doi.org/10.1016/0010-938X(86)90139-3.
  20. Glass, G.K. and Buenfeld, N.R. (2000), "The influence of the steel-concrete interface on the risk of chloride induced corrosion", EPSRC Grant GR/K96328 Report; Department of Civil and Environmental Engineering, Imperial College London, London, UK.
  21. Glass, G.K. and Buenfeld, N.R. (2000), "The inhibitive effects of electrochemical treatment applied to steel in concrete", Corros. Sci., 42(6), 923-927. https://doi.org/10.1016/S0010-938X(99)00121-3.
  22. Gonzalez, J.A. and Andrade, C. (1982), "Effect of Carbonation, Chlorides and relative ambient humidity on the corrosion of galvanized rebars embedded in concrete", Br. Corros. J., 17(1), 21-28. https://doi.org/10.1179/000705982798274589.
  23. Green, W.K., Lyon S.B. and Scantlebury, J.D. (1993), "Electrochemical changes in chloride-contaminated reinforced concrete following cathodic polarization", Corros. Sci., 35(5-8), 1627-1631. https://doi.org/10.1016/0010-938X(93)90392-T.
  24. Hwang, W. and Ann, K.Y. (2023), "Determination of rust formation to cracking at the steel-concrete interface in concrete", Constr. Build. Mater., 367, 130215. https://doi.org/10.1016/j.conbuildmat.2022.130215.
  25. ISO WD 18726 (2023), Assessment, Prevention and Repair for Steel Corrosion in Reinforced Concrete Structures, International Standardization Organization, Vernier, Geneva, Switzerland.
  26. ISO 16311-3:2014 (2014), Maintenance and Repair of Concrete Structures - Part 3: Design of Repairs and Prevention, International Organization for Standardization, Vernier, Geneva, Switzerland.
  27. ISO 16311-4:2014 (2014), Maintenance and Repair of Concrete Structures - Part 4: Execution of Repairs and Prevention, International Organization for Standardization, Vernier, Geneva, Switzerland.
  28. Kim, K.B., Hwang, J.P. and Ann, K.Y. (2016), "Influence of cementitious binder on chloride removal under electrochemical treatment in concrete", Constr. Build. Mater., 104, 191-197. https://doi.org/10.1016/j.conbuildmat.2015.12.052.
  29. Liu, C.C. and Kuo, W.T. (2014), "Prediction of ions migration behavior in mortar under 2-D ALMT application to inhibit ASR", Comput. Concrete, 14(3), 263-277. http://doi.org/10.12989/cac.2014.14.3.263.
  30. Liu, C.C., Kuo, W.T. and Huang, C.Y. (2013), "Equifield line simulation and ion migration prediction for concrete under 2-D electric field", Comput. Concrete, 12(4), 431-442. http://doi.org/10.12989/cac.2013.12.4.431.
  31. Liu, Y. and Weyers, R.E. (1998), "Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures", ACI Mater. J., 95(6), 675-680. https://doi.org/10.14359/410.
  32. Martinez, I., Andrade, C., Castellote M. and Viedma, G.P. (2009), "Advancements in non-destructive control of efficiency of electrochemical repair techniques", Corros. Eng. Sci. Technol., 44(2), 108-118. https://doi.org/10.1179/174327808X286266.
  33. Mien, T.V., Nawa, T. and Stitmannaithum, B. (2014), "Chloride binding isotherms of various cements basing on binding capacity of hydrates", Comput. Concrete, 13(6), 695-707. http://doi.org/10.12989/cac.2014.13.6.695.
  34. Miranda, J.M., Cobo, A., Otero, E. and Gonzalez, J.A. (2007), "Limitations and advantages of electrochemical chloride removal in corroded reinforced concrete structures", Cement Concrete Res., 37(4), 596-603. https://doi.org/10.1016/j.cemconres.2007.01.005.
  35. Nguyen, T.Q., Baroghel-Bouny, V. and Dangla, P. (2006), "Prediction of chloride ingress into saturated concreternon the basis of a multi-species model by numerical calculations", Comput. Concrete, 3(6), 401-422. http://doi.org/10.12989/cac.2006.3.6.401.
  36. Nguyen, H.Y.T., Pansuk, W. and Sancharoen, P. (2018), "The effects of electro-chemical chloride extraction on the migration of ions and the corrosion state of embedded steel in reinforced concrete", KSCE J. Civil Eng., 22, 2942-2950. https://doi.org/10.1007/s12205-017-2022-7.
  37. Nguyen, H.Y.T., Tran, V.M., Pansuk, W., Cao, N.T. and Bui, V.H.L. (2021), "Electrochemical chloride extraction on reinforced concrete contaminated external chloride: Efficiencies of intermittent applications and impacts on hydration products", Cement Concrete Compos., 121, 104076. https://doi.org/10.1016/j.cemconcomp.2021.104076.
  38. Reou, J.S. and Ann, K.Y (2009), "Electrochemical assessment on the corrosion risk of steel embedment in OPC concrete depending on the corrosion detection techniques", Mater. Chem. Phys., 113(1), 78-84. https://doi.org/10.1016/j.matchemphys.2008.07.063.
  39. Reou, J.S. and Ann, K.Y. (2010), "The distribution of hydration products at the steel-concrete interface for concretes subjected to electrochemical treatment", Corros. Sci., 52(6), 2197-2205. https://doi.org/10.1016/j.corsci.2010.02.037
  40. Ryou, J. S. and Ann, K. Y. (2008), "Variation in the chloride threshold level for steel corrosion in concrete arising from different chloride sources", Mag. Concr. Res. 60(3), 177-187. https://doi.org/10.1680/macr.2008.60.3.177.
  41. Ryu, J.S. and Otsuki, N. (2002), "Crack closure of reinforced concrete by electrodeposition technique", Cement Concrete Res., 32(1), 159-164. https://doi.org/10.1016/S0008-8846(01)00650-0.
  42. Sanchez, M. and Alonso, M.C. (2011), "Electrochemical chloride removal in reinforced concrete structures: Improvement of effectiveness by simultaneous migration of calcium nitrite", Constr. Build. Mater., 25(2), 873-878. https://doi.org/10.1016/j.conbuildmat.2010.06.099.
  43. Sereewatthanawut, I., Pansuk, W., Pheinsusom, P. and Prasittisopin, L. (2021), "Chloride-induced corrosion of a galvanized steel embedded calcium sulfoaluminate stucco system", J. Build. Eng., 44, 103376. https://doi.org/10.1016/j.jobe.2021.103376.
  44. Ueda, T., Wakitani, K. and Nanasawa, A. (2012), "Influence of electrolyte temperature on efficiency of electrochemical chloride removal from concrete", Electrochim. Acta., 86, 23-27. https://doi.org/10.1016/j.electacta.2012.05.026.
  45. Wang, L. and Bao, J. (2015), "Mesoscale computational simulation of the mechanical response of reinforced concrete members", Comput. Concrete, 15(2), 305-319. https://doi.org/10.12989/cac.2015.15.2.305.
  46. Xia, J., Liu, Q.F., Mao, J.H., Qian, Z.H., Jin, S.J., Hu, J.Y. and Jin, W.L. (2018), "Effect of environmental temperature on efficiency of electrochemical chloride removal from concrete", Constr. Build. Mater., 193, 189-195. https://doi.org/10.1016/j.conbuildmat.2018.10.187.
  47. Yeih, W., Chang, J.J., Chang, C.C., Chen, K.L. and Chi, M.C. (2016), "Electrochemical chloride removal for reinforced concrete with steel rebar cage using auxiliary electrodes", Cement Concrete Compos., 74, 136-146. https://doi.org/10.1016/j.cemconcomp.2016.08.002.