• 제목/요약/키워드: Current Limiting

검색결과 746건 처리시간 0.036초

해양전력계통에서 한류 리액터 적용에 관한 연구 (A study on applications of current limiting reactor in marine electrical power systems)

  • 김철호;김현준;정현우;윤경국;김윤식;서동환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권1호
    • /
    • pp.86-91
    • /
    • 2014
  • 조선해양 및 플랜트 분야에서의 전력계통 구성은 분산 배치된 각각의 발전모선을 전기적으로 연결하여 사용한다. 이러한 방식은 다중화 된 모선이라기보다는 육상에서의 계통 연계와 동일한 개념으로 인식하는 것이 적합할 것이다. 이는 발전모선의 추가로 인하여 모선의 단락용량 또한 비례적으로 증대되기 때문이다. 단락용량의 증가는 관련 제반 비용의 상승을 초래하고 전기적 고장 발생 시에 물리적으로 연결된 모선들이 일시에 대정전(Blackout)을 발생시킬 가능성도 높아진다. 이러한 문제점을 해결하기 위하여 본 논문에서는 한류 리액터가 적용된 조선해양 전력계통에서 발전모선을 위상구조(Bus Topology)에 따라 분류하고 고장 종류 별로 단락전류 해석을 수행하였으며 그 결과를 상호 비교하여 장단점을 제시하였다.

염수의 탈염을 위한 전기투석 농축실에서의 스케일 형성 (Scale Formation in the Concentrate Compartment of an Electrodialysis Stack During Desalination of Brackish Water)

  • 문승현;양정훈;연경호
    • 멤브레인
    • /
    • 제15권2호
    • /
    • pp.175-186
    • /
    • 2005
  • 전기투석 공정에서 이온교환막 표면에 형성되는 스케일 영향을 조사하기 위해 장기간 동안 운전되었다. 탈염공정 동안, $Ca^{2+}$$SO_4^{2-}$ 이온의 농도는 농축실에서 연속적으로 증가하였으며 양이온교환막(Neosepta CMX)표면에 침전이 발생하였다. 초기 스케일 형성동안, 공정성능과 막 특성의 변화는 농축실 염농도 증가에 기인하여 일어나는 양이온교환막의 하계전류밀도가 감소하는 것을 제외하곤 미미하였다. 공정운전이 진행됨에 따라 양이온교환막의 한계전류밀도는 물의 해리 현상이 진행되어 $300\;A/m^2$까지 감소하였다. 막 오염은 농축실에서 양이온교환막 표면에 형성된 스케일과 물의 해리현상에 의해 유발된다는 결론을 얻었으며, 이러한 스케일 형성은 $CaSO_4$의 용해도에 의해 예측 가능한 것을 알 수 있었다.

타르타르酸염支持溶液에서의 Cd (II) 폴라로그람의 異常波에 關한 硏究 (Study on Anomalous Polarographic Behavior of Cd (II) in Tartrate Solution)

  • 고광호
    • 대한화학회지
    • /
    • 제11권4호
    • /
    • pp.179-184
    • /
    • 1967
  • pH 6.0~12.6 範圍에서 0.15M 타르타르酸鹽支持溶液 속에서의 Cd(II)플라로그람을 20$^{\circ}C 및 25$^{\circ}C에서 調査한 結果 pH 7.8 部分까지는 限界電流값 및 半波電位값이 一定하지만 같은 이온强度의 窒酸鹽支持溶液을 사용하였을 때에 비하여 半波電位값이 0.05 volt 負쪽으로 移行하고 있으며 限界電流값은 28% 감소되었다. pH 8.2 部分以上부터는 限界電流값이 急激하게 감소하다가 pH11.2~11.4 부근 以上부터 다시 急激히 증가하는 現象을 보여 주었다. 한편 pH 8.2 部分以上부터는 半波電位값은 pH증가에 따라 계속 負 쪽으로 移行하여 pH 12.6에서는 -0.78volt로 되었다. 可能한 電極反應機構를 假定하고 pH 9.4에 이르기 까지의 還元波變動의 原因을 檢討하였다.

  • PDF

개선된 자속구속형 전류제한기의 사고 시점에 따른 사고전류제한 특성 (Characteristics according to the spot at the beginning of the fault current)

  • 김용진;두호익;이동혁;한상철;이정필;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.189-189
    • /
    • 2010
  • The Improved flux-lock type superconducting fault current limiter(SFCL) is composed of a series transformer and superconducting unit of the YBCO coated conductor. The primary and secondary coils in the transformer were wound in series each other through an iron core and the YBCO coated conductor was connected with secondary coil in parallel. In a normal condition, the flux generated from a primary coil is cancelled out by its structure and the zero resistance of the YBCO thin films. When a fault occurs, the resistance of the YBCO coated conductor was generated and the fault current was limited by the SFCL. In this paper, we investigated the fault current limiting characteristics through the spot at the beginning of the fault current in the Improved flux-lock type SFCL. The experiment results that the fault current limiting characteristics was difference according to the point of a fault current started. Through the analysis, it was shown that shorter the time of a phase transition.

  • PDF

Operating characteristics of a superconducting DC circuit breaker connected to a reactor using PSCAD/EMTDC simulation

  • Kim, Geon-woong;Jeong, Ji-sol;Park, Sang-yong;Choi, Hyo-sang
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권3호
    • /
    • pp.51-54
    • /
    • 2021
  • The DC system has less power loss compared to the AC system because there is no influence of frequency and dielectric loss. However, the zero-crossing point of the current is not detected in the event of a short circuit fault, and it is difficult to interruption due to the large fault current that occurs during the opening, so the reliability of the DC breaker is required. As a solution to this, an LC resonance DC circuit breaker combined a superconducting element has been proposed. This is a method of limiting the fault current, which rises rapidly in case of a short circuit fault, with the quench resistance of the superconducting element, and interruption the fault current passing through the zero-crossing point through LC resonance. The superconducting current limiting element combined to the DC circuit breaker plays an important role in reducing the electrical burden of the circuit breaker. However, at the beginning of a short circuit fault, superconducting devices also have a large electrical burden due to large fault currents, which can destroy the element. In this paper, the reactor is connected to the source side of the circuit using PSCAD/EMTDC. After that, the change of the fault current according to the reactor capacity and the electrical burden of the superconducting element were confirmed through simulation. As a result, it was confirmed that the interruption time was delayed as the capacity of the reactor connected to the source side increased, but peak of the fault current decreased, the zero-crossing point generation time was shortened, and the electrical burden of the superconducting element decreased.

Fault Current Limiting Characteristic of Non-inductively Wound HTS Magnets in Sub-cooled $LN_2$ Cooling System

  • Park Dong-Keun;Ahn Min-Cheol;Yang Seong-Eun;Lee Chan-Joo;Seok Bok-Yeol;Yoon Yong-Soo;Ko Tae-Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권2호
    • /
    • pp.29-32
    • /
    • 2006
  • An advanced superconducting fault current limiter (SFCL) using $high-T_c$ superconducting (HTS) wire has been developed. The SFCL has a non-inductively wound magnet for reducing loss in normal state. Two types of non-inductively wound magnets, the solenoid type and the pancake type, were designed and manufactured by using Bi-2223 wire in this research. Short-circuit tests of the magnets were performed in sub-cooled $LN_2$ cooling system of 65 K. The magnets are thermally more stable and have a higher critical current in 65 K sub-cooled $LN_2$ cooling system than in 77 K saturated one. Because the resistivity of matrix at 65 K is lower than the resistivity at 77 K, the magnets generate a small resistance to reduce the fault current when the quench occurs. The magnets could limit the fault current to low current level with such a small resistance. The current limiting characteristic of the magnets was analyzed from the test result. The solenoid type was wound in parallel to make it non-inductive. The pancake type was also connected in parallel to be compared with the solenoid type in the same condition. The solenoid type was found to have a good thermal stability compared with the pancake type. It also had as large resistance as the pancake type to limit the fault current in sub-cooled $LN_2$ cooling system.

여자시스템과 동기발전기의 회전자 권선에 발생되는 과전압에 대한 보호회로 연구 (The study of the protection circuit about overvoltage between excitation system and synchronous machines)

  • 류호선;임익헌
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.188-192
    • /
    • 1997
  • In the case of synchronous machines, certain power system disturbances cause the induced rotor current to assume negative values when no static converter is present. A converter, however, prevents negative current from flowing, so that overvoltages occur. The overvoltages can be effectively limited as crowbar circuit using GTO. This newly proposed crowbar circuit with current limiting resistor absorbs energy when overvoltage comes from power system repeatedly and verified through experiment

  • PDF

션트저항을 통한 박막형 초전도 한류기의 전압등급 증대 (Increase of voltage ratings in the superconducting fault current limiter using thin films by shunt resistors)

  • 최효상;김혜림;황시돌;박권배;현옥배
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2001년도 학술대회 논문집
    • /
    • pp.176-177
    • /
    • 2001
  • Three nearly identical superconducting fault current limiters (SFCLs) were connected in series to increase the voltage ratings. A slight difference in the quench starting point of individual SFCL units produced significantly imbalanced power distribution when connected in series. The imbalance was successfully removed by connecting a shunt resistor to one SFCL in parallel. 1.2 kV SFCL was designed with five current limiting elements and two or three shunt resistors.

  • PDF