• Title/Summary/Keyword: Current Consumption

Search Result 2,039, Processing Time 0.029 seconds

An Adaptive Power Saving Mechanism in IEEE 802.11 Wireless IP Networks

  • Pack Sangheon;Choi Yanghee
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.126-134
    • /
    • 2005
  • Reducing energy consumption in mobile hosts (MHs) is one of the most critical issues in wireles/mobile networks. IP paging protocol at network layer and power saving mechanism (PSM) at link layer are two core technologies to reduce the energy consumption of MHs. First, we investigate the energy efficiency of the current IEEE 802.11 power saving mechanism (PSM) when IP paging protocol is deployed over IEEE 802.11 networks. The result reveal that the current IEEE 802.11 PSM with a fixed wakeup interval (i.e., the static PSM) exhibits a degraded performance when it is integrated with IP paging protocol. Therefore, we propose an adaptive power saving mechanism in IEEE 802.11-based wireless IP networks. Unlike the static PSM, the adaptive PSM adjusts the wake-up interval adaptively depending on the session activity at IP layer. Specifically, the MH estimates the idle periods for incoming sessions based on the exponentially weighted moving average (EWMA) scheme and sets its wake-up interval dynamically by considering the estimated idle period and paging delay bound. For performance evaluation, we have conducted comprehensive simulations and compared the total cost and energy consumption, which are incurred in IP paging protocol in conjunction with various power saving mechanisms: The static PSM, the adaptive PSM, and the optimum PSM. Simulation results show that the adaptive PSM provides a closer performance to the optimum PSM than the static PSM.

Design of a 25 mW 16 frame/s 10-bit Low Power CMOS Image Sensor for Mobile Appliances

  • Kim, Dae-Yun;Song, Min-Kyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.2
    • /
    • pp.104-110
    • /
    • 2011
  • A CMOS Image Sensor (CIS) mounted on mobile appliances requires low power consumption due to limitations of the battery life cycle. In order to reduce the power consumption of CIS, we propose novel power reduction techniques such as a data flip-flop circuit with leakage current elimination and a low power single slope analog-to-digital (A/D) converter with a sleep-mode comparator. Based on 0.13 ${\mu}m$ CMOS process, the chip satisfies QVGA resolution (320 ${\times}$ 240 pixels) that the cell pitch is 2.25 um and the structure is a 4-Tr active pixel sensor. From the experimental results, the performance of the CIS has a 10-b resolution, the operating speed of the CIS is 16 frame/s, and the power dissipation is 25 mW at a 3.3 V(analog)/1.8 V(digital) power supply. When we compare the proposed CIS with conventional ones, the power consumption was reduced by approximately 22% in the sleep mode, and 20% in the active mode.

Is It Possible to Achieve IMO Carbon Emission Reduction Targets at the Current Pace of Technological Progress?

  • Choi, Gun-Woo;Yun, Heesung;Hwang, Soo-Jin
    • Journal of Korea Trade
    • /
    • v.26 no.1
    • /
    • pp.113-125
    • /
    • 2022
  • Purpose - The primary purpose of this study is to verify whether the target set out by the International Maritime Organization (IMO) for reducing carbon emissions from ships can be achieved by quantitatively analyzing the trends in technological advances of fuel oil consumption in the container shipping market. To achieve this purpose, several scenarios are designed considering various options such as eco-friendly fuels, low-speed operation, and the growth in ship size. Design/methodology - The vessel size and speed used in prior studies are utilized to estimate the fuel oil consumption of container ships and the pace of technological progress and Energy Efficiency Design Index (EEDI) regulations are added. A database of 5,260 container ships, as of 2019, is used for multiple linear regression and quantile regression analyses. Findings - The fuel oil consumption of vessels is predominantly affected by their speed, followed by their size, and the annual technological progress is estimated to be 0.57%. As the quantile increases, the influence of ship size and pace of technological progress increases, while the influence of speed and coefficient of EEDI variables decreases. Originality/value - The conservative estimation of carbon emission drawn by a quantitative analysis of the technological progress concerning the fuel efficiency of container vessels shows that it is not possible to achieve IMO targets. Therefore, innovative efforts beyond the current scope of technological progress are required.

A 1.5V-25MHz symmetric feedback current enhancement continuous-time current-mode CMOS filter (1.5V-25MHz 대칭적 귀환전류 증가형 연속시간 전류 구동 CMOS 필터)

  • 장진영;윤광섭
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.514-517
    • /
    • 1998
  • This paper proposed a symmetric feedback current enhancement circuit with 1.5V power supply to design a 3$^{rd}$ order butterworth low pass filter. The proposed filter designed on 0.8.mu.m CMOS n-well double poly/double metal process simulated in HSPICE composed of the 3dB frequency enhancement circuit and the unity-gain frequency enhancement circuit. The simulation result on the design filter shows the badnwith of 25MHz, phase of 92.6 .deg. and power consumption of 0.3mW..

  • PDF

Low Voltage Current Controlled Driving Method for AC PDP

  • Lee, Yang-Keun;Um, Jong-Sik;Kim, Joon-Yub
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.207-210
    • /
    • 2002
  • This paper presents a new driving method that can drive AC PDPs with low voltage and controlled-current for the sustaining period. The discharge current flowing into the AC PDP is limited in this method. Thus, the power consumption for the discharge is reduced and the discharge input power to output luminance efficiency is improved. Experimental results using this driving method showed that we could drive an AC PDP with a voltage source as low as 146 V and that luminous efficiency of 1.33 lm/W can be achieved.

  • PDF

New Driving Method of High Brightness LED Backlight Using Active Current Source

  • Hwang, S.;LEE, J.;Lim, S.;Oh, M.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1642-1645
    • /
    • 2007
  • The brightness of LED changes according to the current flowing through LEDs. The current mirror was used to drive LEDs effectively. The reference current of the current mirror was usually controlled by the resistor but the size of this resistor is very large and this resistor consumes too much power for high power LED backlight driving. The reference current of the current mirror LED driver was controlled by using flyback converter at small size with low power consumption in this paper. The concept of active current source was presented.

  • PDF

Operation characteristics of a fault current limiter by high speed interrupter and a superconducting element

  • Im, I.G.;Jung, I.S.;Choi, H.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.3
    • /
    • pp.10-14
    • /
    • 2014
  • Due to continuous increase of electric power consumption, couple of resolutions for improving accuracy in power system like line separation are being studied. The increase of the power demand can cause problems such as supply difficulties of the electricity and broadband outages, failure, etc. When a fault occurs in the power system, a fault current also increases. Fault current creates problems like reduction of lifespan and failure on the power system. In order to resolve these problems, the reduction of initial fault current using the characteristics of superconducting element was applied to fault current limiter. We applied the system to high speed fault current limiter. We found that the superconducting element effectively reduced initial fault current and the fault current was limited by changing operation of high speed interrupter.

Proposal of 'Consumer Life' Area Curriculum in Home Economics Education for Ethical Consumption Practice (윤리적 소비실천을 위한 가정과 '소비생활' 영역 교육과정 제안)

  • Kim, Nam Eun
    • Journal of Korean Home Economics Education Association
    • /
    • v.30 no.4
    • /
    • pp.57-81
    • /
    • 2018
  • The purpose of this study is to propose the curriculum of consumer life field in Home Economics Education(HEE) to raise people who practice 'ethical consumption'. For this purpose, this study established the concept of ethical consumption through an academic review of the concept of ethical consumption first. Ethical consumption is to the practice of consumption that fulfills personal and social responsibilities to change human life happily. In this study, we find out how the consumer life area in the HEE curriculum has been educated and we propose how to teach the content of ethical consumption in HEE curriculum by critically examining the content of ethical consumption presented in current HEE textbooks First, in the HEE curriculum, the contents of the consumer life field have been presented since the first curriculum, and the qualitative change has gradually been made as the concept of the consumer culture, but responsible consumption and ethical consumption are not properly reflected in the education and the summit. Second, the revised HEE textbooks of 2015 is necessary to present concrete method of ethical consumption practice because it lacks definite definition of ethical consumption and presents only general contents. Third, the direction of HEE curriculum for ethical consumption practice is responsible and the goal of HEE curriculum is to raise awareness of social responsibility for ethical consumption practice. The contents of HEE curriculum for ethical consumption practice should be included in consumption and consumption, sustainable consumption, and ethical consumption.

Design of a Low-Power MOS Current-Mode Logic Circuit (저 전력 MOS 전류모드 논리회로 설계)

  • Kim, Jeong-Beom
    • The KIPS Transactions:PartA
    • /
    • v.17A no.3
    • /
    • pp.121-126
    • /
    • 2010
  • This paper proposes a low-power MOS current-mode logic circuit with the low voltage swing technology and the high-threshold sleep-transistor. The sleep-transistor is used to high-threshold voltage PMOS transistor to minimize the leakage current. The $16{\times}16$ bit parallel multiplier is designed by the proposed circuit structure. Comparing with the conventional MOS current-model logic circuit, the circuit achieves the reduction of the power consumption in sleep mode by 1/104. The proposed circuit is achieved to reduce the power consumption by 11.7% and the power-delay-product by 15.1% compared with the conventional MOS current-model logic circuit in the normal mode. This circuit is designed with Samsung $0.18\;{\mu}m$ standard CMOS process. The validity and effectiveness are verified through the HSPICE simulation.

Analysis Operating Characteristics of Matrix-Type Superconducting Fault Current Limiter in Ground Faults of Power Grid (전력계통의 지락사고에 대한 매트릭스형 초전도 한류기의 동작특성)

  • Oh, Kum-Gon;Cho, Yong-Sun;Choi, Hyo-Sang;Oh, Seong-Bo;Kim, Deog-Goo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.14-20
    • /
    • 2009
  • It is very important for power stability to suppress the excessive fault current happened frequently in the real power grid The superconducting fault current limiter (SFCL) is one of the most effective ways to reduce the fault current among the facilities developed so far. In this paper, we have investigated the operating characteristics of the power grid with the SFCL according to three types such as the single, double and triple line-to-ground faults. In addition, we analyzed the consumption power of the superconducting units based on the working data of the SFCL. We confirmed that the fault current could be limited lower than its peak value to 85 percentage in initial fault condition and to 85 percentage after one cycle in the matrix-type SFCL. The consumption powers of the superconducting units were almost equal by reduction of the difference of the critical current between superconducting units element.