• Title/Summary/Keyword: Current Circuit Breaker

Search Result 370, Processing Time 0.029 seconds

Selection of Capacity of Circuit Breaker by Probabilistic Short-Circuit Current Analysis (확률적 고장전류 해석에 의한 차단기 용량 선정)

  • 문영현;오용택
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.1
    • /
    • pp.10-15
    • /
    • 1990
  • This paper presents an algorithm that can compute equivalent impedance effctively in computing 3-phase short circuit current which would be generated in power systems. Also this paper proposes a method that can decide the capacity of circuit breaker by analysing the fault current distribution probabilistically when the fault point of specificed line varies. The efficiency of the algorithm was verified by applying the proposed method to IEEE-6bus system and IEEE-30bus system, and probabilistic fault analysing method is verified economic in facility investment by deciding the proper capacity of circuit breaker.

  • PDF

Parametric Study and Optimized Thermal Design of a High-Voltage Vacuum Circuit Breaker (고압진공차단기의 정격전류상승을 위한 GAE해석)

  • Ahn, Heui-Sub;Lee, Jong-Chul;Choi, Jong-Ung;Oh, Il-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.39-42
    • /
    • 2002
  • In this study, the computational heat transfer of the high-voltage vacuum circuit breaker was investigated. Higher normal current-ratings and stabilized thermal characteristics become more important in existing circuit breakers in order to satisfy market needs. Increases in current-ratings have an even greater effect on the Joule heating in the main circuit of the breakers. The thermal design must account for this increase in heat produced for the breaker to meet various temperature-rise limits set by industry standards. We are studying to enhance the normal current-ratings without major frame change of our present production models. As the method used in this research, we performed the computational analysis using the commercial Package, ICEPAK. We could get optimized thermal design suitable for 25% upgraded normal current-ratings through parametric study.

  • PDF

A Study on the Application Impacts on Korean Power System by Introducing SFCL

  • Kim, Jong-Yul;Park, Heung-Kwan;Yoon, Jae-Young
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.1
    • /
    • pp.1-6
    • /
    • 2003
  • As power systems grow more complex and power demands increase, the fault current tends to gradually increase. In the near future, the fault current will exceed a circuit breaker rating for some substations, which is an especially important issue in the Seoul metropolitan area because of its highly meshed configuration. Currently, the Korean power system is regulated by changing the 154 ㎸ system configuration from a loop connection to a radial system, by splitting the bus where load balance can be achieved, and by upgrading the circuit breaker rating. A development project applying 154 ㎸ Superconducting Fault Current Limiter(SFCL) to 154 ㎸ transmission systems is proceeding with implementation slated for after 2010. In this paper, the resistive and inductive SFCLs are applied to re-duce the fault current in Korean power system and their technical and economic impacts are evaluated. The results show that the application of SFCL can eliminate the need to upgrade the circuit breaker rat-ing and the economic potential of SFCL is evaluated positively.

Characteristics Analysis of the Solenoid for High-Voltage Circuit Breaker (고전압 차단기용 솔레노이드의 특성해석)

  • 윤소남;류재섭;함영복;노종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.382-385
    • /
    • 2003
  • In this paper, the solenoid for high-voltage circuit breaker which is composed of bobbin, solenoid coil, stationary core and plunger was studied. The solenoid is made of a soft magnetic iron bar with a large number of coil windings. when an electric current passes through this, this stationary core becomes the strong magnet used for hydraulic and pneumatic valve of a solenoid operated valve. For the performance evaluation of the solenoid for high-voltage circuit breaker, electromagnetic characteristics and dynamic characteristics were analyzed. And, the parameters which is related to performance improvement were investigated.

  • PDF

Study of Self-excited Resonant DC Circuit Breaker in Future DC Grid (향후 DC 전력 계통에서의 자려 공진 DC 차단기에 관한 연구)

  • Guo, Qinglei;Yoon, Minhan;Jang, Gilsoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.396-397
    • /
    • 2015
  • With the increasing utilization of high-voltage, direct current (HVDC) transmissions in modern power systems, the DC grid is becoming a hot topic in academic and practical systems. In the DC grid, one of the urgent problems is the fast clearance of the DC fault in the DC network. One preferred method is to isolate the faulty point from the DC network in a short time. The DC circuit breaker is to interrupt the overcurrent after DC faults occur. In this paper, a self-excited resonant DC circuit breaker is an easy and cheap equipment to interrupt the DC fault current. The Mayr's arc model is utilized to simulate the self-excited DC circuit breaker in a DC test system in PSCAD/EMTDC.

  • PDF

Comparison of Fault Current Reduction Effects by the SFCL Introduction Locations

  • Kim Jong Yul;Lee Seung Ryul;Yoon Jae Young
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.16-20
    • /
    • 2005
  • As power systems grow more complex and power demands increase, the fault current tends to gradually increase. In the near future, the fault current will exceed a circuit breaker rating for some substations, which is an especially important issue in the Seoul metropolitan area because of its highly meshed configuration. Currently, the Korean power system is regulated by changing the 154kV system configuration from a loop connection to a radial system, by splitting the bus where load balance can be achieved, and by upgrading the circuit breaker rating. A development project applying 154kV Superconducting Fault Current Limiter (SFCL) to 154kV transmission systems is proceeding with implementation slated for after 2010. In this paper, SFCL is applied to reduce the fault current in power systems according to two different application schemes and their technical impacts are evaluated. The results indicate that both application schemes can regulate the fault current under the rating of circuit breaker, however, applying SFCL to the bus-tie location is much more appropriate from an economic view point.

A Development of Software about Short-circuit Calculation and Protective-coordination (고장계산 및 보호협조 판정 소프트웨어 개발)

  • Park, S.C.;Choe, J.H.;Seo, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.159-162
    • /
    • 2002
  • A software, called touch-one, is developed about the determination of short-circuit values and protective co-ordination in power system. The used solution algorithm reviewed intensively, and the protective co-ordination determination technique presented by using the circuit-breaker's current-limitation characteristic. The protective coordination concerns the behaviour of two devices placed in series in an electrical network, with a short-circuit downstream circuit-breaker. It has two basic principles: First, discrimination which is an increasing requirement of low voltage electrical distribution systems. Second, which is less well known: cascading, which consists of installing a device, whose breaking capacity is less than the three-phase short-circuit current at its terminals and helped by main circuit-breaker. With this software, we can construct a electric-power system which is reliable and economic according to user's purpose.

  • PDF

A study on AC over-current breaker using thyristor (Thyristor를 이용한 교류과전류 차단에 관한 연구)

  • 박민호;심재명
    • 전기의세계
    • /
    • v.28 no.7
    • /
    • pp.49-55
    • /
    • 1979
  • This paper describes the mechanisms which breaks A.C. over-current protection in low voltage load. For the high speed over-current protection, it consists of thyristor switching circuit by forced commutation, IC logic gate controlled circuit and over-current detector with reed switch. Under various duty conditions, breacker was carried out several experiments and discussions. The results are as follows; (1) over-current cut off is possible within a quarter cycle (4ms at 60Hz) and clear is at least ten times faster than its electromechanical equivalent. (2) as the forced commutation thyristor circuit breaker has capability of high speed break, equivalent surgy current capacity of switching thyristor is increased more than twenty times of its rated current. (3) breaker using solid state dose not produce any harmful arc during switching period. Therefore the breaker above described may be considered an effective over-current protector for soli state power devices in industrial applications.

  • PDF

A Study on DC Interruption Technology using a Transformer Type Superconducting Fault Current Limiter to Improve DC Grid Stability (DC 그리드 안정성 향상을 위해 변압기형 초전도 한류기가 적용된 직류 차단 기술에 관한 연구)

  • Hwang, Seon-Ho;Choi, Hye-won;Jeong, In-Sung;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.595-599
    • /
    • 2018
  • Interruption system with the transformer type superconducting fault current limiter(TSFCL) is proposed in this paper. The interruption system with a TSFCL is a technology that it maximizes the interruption function of a mechanical DC circuit breaker using a transformer and a superconducting fault current limiter. By a TSFCL, the system limits the fault current till the breakable current range in the fault state. Therefore, the fault current could be cut off by a mechanical DC circuit breaker. The Interruption system with a TSFCL were designed using PSCAD/EMTDC. In addition, the Interruption system with a TSFCL was applied to the DC test circuit to analyze characteristics of a current-limiting and a interruption operation. The simulation results showed that the Interruption system with a TSFCL interrupted the fault current in a stable when a fault occurred. Also, The current-limiting rate of the Interruption system with a TSFCL was approximately 69.55%, and the interruption time was less than 8 ms.

A Study on the Program Analyzing the Arc Phenomena in Gas Circuit Breaker (가스차단기의 아크현상 해석프로그램에 대한 연구)

  • Choi, Young-Kil;Choi, Sang-Tae;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.74-81
    • /
    • 2011
  • A computational approach was developed to understand about the arc quenching process in a gas circuit breaker(GCB). This approach is a program to analyze the gas flow in the breaker. The arc is processed at the same time. The program was used the so-called FLIC method for gas analysis techniques. It was referenced that the arc is interpreted the 'a Simplified Enthalpy Flow Arc Model'. In order to validate about the results of the program, a Auto Puffer GCB was chosen as the test subject. Because, the breaker is the one that arc current is interrupted by using the arc heating. And also, the current interrupting capability can be obtained only owing to the positive utilization(auto puffer) of the clogging phenomenon, without other puffer actions. In this paper, it has been realized that the entire arc quenching process is computerized, which is based on the self-flow current interruption by the auto puffer action. This program, which was verified through experiments, produced good results.