• 제목/요약/키워드: Current Cell

검색결과 3,978건 처리시간 0.033초

Hull Cell에서 전류분포의 균일화에 관한 연구 (A Study on Uniformity of Current Distribution in Hull Cell)

  • 여운관
    • 한국표면공학회지
    • /
    • 제27권6호
    • /
    • pp.340-346
    • /
    • 1994
  • The method of uniforming current distribution in Hull cell are studied by using auxiliary anode, current shield bipolar electrode, and combinings bipolar electrode with current shield in order to find a way of uni-form deposition. The current density distributions are measured by each ammeter of the same inner resistance connected to divided cathode pannel respectively. The current density distributions of cathode electrode divided into five sections with 5mm width have a tendency of linear inclination, and that of twenty sections have a tendency of smoother curve than the curve of original Hull cell pannel. Their results showed lower value on the high current density portion and higher value on the low portion than that original Hull cell pannel. The current distribution in Hull cell is able to unify by using auxiliary anode, or combining bipo-lar electrode with current shield, but not efficient in using one of both individually.

  • PDF

전류집전 방법에 따른 원통형 고체산화물 연료전지의 성능 변화 수치해석 (Numerical Analysis on Performance Changes of the Tubular SOFCs according to Current Collecting Method)

  • 유건;박석주;이종원;이승복;임탁형;송락현;신동열;김호영
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.129-138
    • /
    • 2011
  • Performance changes of an anode-supported tubular SOFC including current collectors are analyzed at different current collecting methods using numerical simulation. From the two dimensional numerical model of the solid oxide fuel cell with nickel felts as anodic current collectors and silver wires as cathodic ones, the performance curves and the distributions of temperature, concentration, current density are obtained. Also, the voltage loss of the cell is divided into three parts: activation loss, concentration loss and ohmic loss. The results show that the performance change of the cell is dominantly influenced by the ohmic loss. Although the temperature and concentration distributions are different, the total activation loss and concentration loss are nearly same. And the ohmic loss is divided into each parts of the cell components. The ohmic loss of the anodic current collectorreaches about 60~80% of the cell's total ohmic loss. Therefore, the reduction of the ohmic loss of the anodic current collector is very important for stack power enhancement. It is also recommended that the load should be connected to the both ends of the anodic current collector.

디코더 면적을 줄이는 새로운 전류구동 셀 매트릭스 DAC 구조 (A Novel Current Steering Cell Matrix DAC Architecture with Reduced Decoder Area)

  • 정상훈;신홍규;조성익
    • 전기학회논문지
    • /
    • 제58권3호
    • /
    • pp.627-631
    • /
    • 2009
  • This paper presents a novel current steering cell matrix DAC(digital-to-analog converter) architecture to reduce decoder area. The current cell matrix of a existing architecture is selected by columns and lows thermometer code decoder of input bits. But The current cell matrix of a proposal architecture is divided 2n by the thermometer code decoder of upper input bits and are selected by the thermometer code decoder of middle and lower input bits. Because of this configuration, decoder numbers have increased. But the gate number that composed of decoder has decreased. In case of the designed 8 bit current steering cell matrix DAC, the gate number of decoder has decreased by about 55% in comparison with a existing architecture.

부하조건이 마그네슘-공기연료전지의 출력특성에 미치는 영향 (The Effect of Load Conditions for the Power of Mg-Air Fuel Cell)

  • 김용혁
    • 전기학회논문지P
    • /
    • 제61권3호
    • /
    • pp.134-139
    • /
    • 2012
  • The power characteristics of the Mg-Air fuel cell were investigated with regard to variation of load conditions. The types of load current using for the Mg-Air fuel cell with 10% NaCl electrolyte were step type, ramp type and pulse type. It was found that transient phenomena occurred in the step current load, which is due to activate of the oxidation-reduction reaction process. And the transient time increase with the load current increase. In the load current of ramp type, the slop of voltage drop increased with current load slop ${\alpha}$ increase. The load voltage and power decreased according to the pulse period of load current decrease were attributed to the metal sludges.

태양전지의 전기적인 출력특성이 태양전지모듈에 미치는 영향 (The Effects of PV Cell's Electrical Characteristics for PV Module Application)

  • 김승태;강기환;박지홍;안형근;유권종;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.36-41
    • /
    • 2008
  • In this paper, we study The Effects of PV Cell's Electrical Characteristics for PV Module Application. Photovoltaic module consists of serially connected solar cell which has low open circuit voltage and high short circuit current characteristics. The whole current flow of PV module is restricted by lowest current of one solar cell. For the experiment, we make PV module composing the solar cells that have short circuit current difference of 0%, 1%, 3% and Random. The PV module exposed about 35days, its the maximum power drop ratio was 4.282% minimum and 6.657% maximum. And PV module of low current characteristics has electrical stress from other modules. The solar cell temperature of PV module was higher compared to PV cell. To prevent early degradation, it is need to have attention to PV cell selection.

  • PDF

동적변화에 강인한 연료전지 발전시스템의 저주파 리플전류 제거 알고리즘 개발 (Development of Robust Algorithm to Eliminate Low Frequency Current Ripples in Fuel Cell Generation System)

  • 김종수;강현수;최규영;이병국
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1720-1727
    • /
    • 2009
  • This paper presents that generation and propagation mechanism of low frequency current ripples generated by a rectification effect of an inverter in fuel cell generation system is analyzed. The ripple reduction methode using hardware components such as capacitors and inductors is examined to reduce low frequency current ripples. A new fast and robust low frequency current ripple elimination algorithm is then proposed to incorporate a single loop current controller, which directly controls fuel cell current, without any extra hardware. The proposed algorithm can completely eliminate this current ripple as well as an overshoot or undershoot is significantly reduced. And the de link voltage and output current are well regulated by inverter controller. The validity of proposed algorithm is verified both computer simulation using PSIM 6.0 and experiment with a 1kW laboratory prototype.

Novel Zero-Current-Switching (BCS) PWM Switch Cell Minimizing Additional Conduction Loss

  • Park, Hang-Seok;Cho, B.H.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제12B권1호
    • /
    • pp.37-43
    • /
    • 2002
  • This paper proposes a new zero-current switching (ZCS) pulse-width modulation (PWM) switch cell that has no additional conduction loss of the main switch. In this cell, the main switch and the auxiliary switch turn on and turn off under zero current condition. The diodes commutate softly and the reverse recovery problems are alleviated. The conduction loss and the current stress of the main switch are minimized, since the resonating current for the soft switching does not flow through the main switch. Based on the proposed ZCS PWM switch cell, a new family of dc to dc PWM converters is derived. The new family of ZCS PWM converters is suitable for the high power applications employing IGBTs. Among the new family of dc to dc PWM converters, a boost converter was taken as an example and has been analyzed. Design guidelines with a design example are described and verified by experimental results from the 2.5㎾ prototype boost converter operating at 40KHz.

연료극 집전체 최적화를 적용한 원통형 고체산화물 연료전지 단전지 성능 향상 (Development of Tubular Solid Oxide Fuel Cells with Advanced Anode Current Collection)

  • 김완제;이승복;송락현;박석주;임탁형;이종원
    • 한국수소및신에너지학회논문집
    • /
    • 제24권6호
    • /
    • pp.480-486
    • /
    • 2013
  • In this study, tubular SOFC unit cell with advanced anode current collector was fabricated to improve the cell performance. First, we prepared two types of single cells having the same manufacture processes such as the same electrolyte, electrode coating condition and sintering processes. And then to compare the developed single cell performance with conventional cells, we changed the anode current collecting methods. From the impedance analysis and I-V curve analysis, the cell performance of advanced cell is much higher than that of conventional cell.

An Experimental Analysis of the Ripple Current Applied Variable Frequency Characteristic in a Polymer Electrolyte Membrane Fuel Cell

  • Kim, Jong-Hoon;Jang, Min-Ho;Choe, Jun-Seok;Kim, Do-Young;Tak, Yong-Sug;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • 제11권1호
    • /
    • pp.82-89
    • /
    • 2011
  • Differences in the frequency characteristic applied to a ripple current may shorten fuel cell life span and worsen the fuel efficiency. Therefore, this paper presents an experimental analysis of the ripple current applied variable frequency characteristic in a polymer electrolyte membrane fuel cell (PEMFC). This paper provides the first attempt to examine the impact of ripple current through immediate measurements on a single cell test. After cycling for hours at three frequencies, each polarization and impedance curve is obtained and compared with those of a fuel cell. Through experimental results, it can be absolutely concluded that low frequency ripple current leads to long-term degradation of a fuel cell. Three different PEMFC failures such as membrane dehydration, flooding and carbon monoxide (CO) poisoning that lead to an increase in the impedance magnitude at low frequencies are simply introduced.

멀티레벨 셀을 가지는 PoRAM의 센싱 기법 (A Sensing Method of PoRAM with Multilevel Cell)

  • 이종훈;김정하;이상선
    • 대한전자공학회논문지SD
    • /
    • 제47권12호
    • /
    • pp.1-7
    • /
    • 2010
  • 본 논문은 멀티레벨을 갖는 PoRAM 셀의 데이터를 센싱하는 기법에 관하여 제안하였다. PoRAM은 유기물질을 사용한 단위 셀의 상,하단 전극에 전압을 가했을 때 나타나는 저항 상태의 변화로 셀 데이터를 구분하는 메모리 소자이다. 특히 한 셀당 최대 4 레벨의 안정된 저항 값을 가지므로 멀티레벨 셀로 활용이 가능하다. 따라서 멀티레벨의 센싱을 위해 어드레스 디코딩 방법, 센스 앰플리파이어, 이를 위한 제어 신호 등을 새롭게 제안하였다. 센스 앰플리파이어는 셀에 흐르는 전류를 입력 값으로 받아 설정된 기준 전류($I_{REF}$)와 비교하는 전류 비교기를 기본으로 구성되며 전류를 증폭하기 위해 낮은 입력 임피던스를 갖도록 설계되었다. 제안된 기법에 의해 설계된 회로는 $0.13{\mu}m$ CMOS 공정 라이브러리를 사용하여 설계되었고, 이를 사용함으로써 단위 셀에 흐르는 서로 다른 4 가지 전류 값이 각각 데이터 "00", "01", "10", "11"으로 정확히 센싱 되는 것을 검증하였다.