• Title/Summary/Keyword: Curing phase

Search Result 122, Processing Time 0.043 seconds

The Characterization of V Based Self-Forming Barriers on Low-k Samples with or Without UV Curing Treatment

  • Park, Jae-Hyeong;Han, Dong-Seok;Gang, Yu-Jin;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.214.2-214.2
    • /
    • 2013
  • Device performance for the 45 and 32 nm node CMOS technology requires the integration of ultralow-k materials. To lower the dielectric constant for PECVD and spin-on materials, partial replacement of the solid network with air (k=1.01) appears to be more intuitive and direct option. This can be achieved introducting of second "labile" phase during depositoin that is removed during a subsequent UV curing and annealing step. Besides, with shrinking line dimensions the resistivity of barrier films cannot meet the International Technology Roadmap for Semiconductors (ITRS) requirements. To solve this issue self-forming diffusion barriers have drawn attention for great potential technique in meeting all ITRS requirments. In this present work, we report a Cu-V alloy as a materials for the self-forming barrier process. And we investigated diffusion barrier properties of self-formed layer on low-k dielectrics with or without UV curing treatment. Cu alloy films were directly deposited onto low-k dielectrics by co-sputtering, followed by annealing at various temperatures. X-ray diffraction revealed Cu (111), Cu (200) and Cu (220) peaks for both of Cu alloys. The self-formed layers were investigated by transmission electron microscopy. In order to compare barrier properties between V-based interlayer on low-k dielectric with UV curing and interlayer on low-k dielectric without UV curing, thermal stability was measured with various heat treatment temperature. X-ray photoelectron spectroscopy analysis showed that chemical compositions of self-formed layer. The compositions of the V based self-formed barriers after annealing were strongly dominated by the O concentration in the dielectric layers.

  • PDF

Comparison of Strength-Maturity Models Accounting for Hydration Heat in Massive Walls

  • Yang, Keun-Hyeok;Mun, Jae-Sung;Kim, Do-Gyeum;Cho, Myung-Sug
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.47-60
    • /
    • 2016
  • The objective of this study was to evaluate the capability of different strength-maturity models to account for the effect of the hydration heat on the in-place strength development of high-strength concrete specifically developed for nuclear facility structures under various ambient curing temperatures. To simulate the primary containment-vessel of a nuclear reactor, three 1200-mm-thick wall specimens were prepared and stored under isothermal conditions of approximately $5^{\circ}C$ (cold temperature), $20^{\circ}C$ (reference temperature), and $35^{\circ}C$ (hot temperature). The in situ compressive strengths of the mock-up walls were measured using cores drilled from the walls and compared with strengths estimated from various strength-maturity models considering the internal temperature rise owing to the hydration heat. The test results showed the initial apparent activation energies at the hardening phase were approximately 2 times higher than the apparent activation energies until the final setting. The differences between core strengths and field-cured cylinder strengths became more notable at early ages and with the decrease in the ambient curing temperature. The strength-maturity model proposed by Yang provides better reliability in estimating in situ strength of concrete than that of Kim et al. and Pinto and Schindler.

Deformation of a mold for large area UV-nanoimprint lithography in alignment and curing processes (UV 나노임프린트리소그래피의 정렬 공정 중 몰드의 변형해석)

  • Park, In-Soo;Won, Chong-Jin;Yim, Hong-Jae;Jeong, Jay-I.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1939-1943
    • /
    • 2008
  • Deformation of a mold is measured and analyzed in alignment and curing processes of UV-Imprint Lithography. We are focused on mold deformation caused by a UV resin, which is laminated between a mold and a target glass-panel. The UV resin is viscous in case of liquid state, and the resin will be solidified when being exposed by the ultra-violet light. The viscosity of the resin causes shear force on the mold during the alignment process. Moreover, the shrinkage during phase change from liquid to solid may cause residual stress on the mold. The experiments for measuring temperature and strain are made during alignment and curing process. Strain-gages and thermocouples are used for measuring the strain and variation of temperature on several points of the mold, respectively. The deformation of mold is also simulated and analyzed. The simulation results are compared with the experiments. Finally, sources of alignment errors in large area UV-nanoimprint lithography are discussed.

  • PDF

Cure Reactions of Epoxy/Anhydride/(Polyamide Copolymer) Blends

  • Youngson Choe;Kim, Wonho
    • Macromolecular Research
    • /
    • v.10 no.5
    • /
    • pp.259-265
    • /
    • 2002
  • The cure kinetics of blends of epoxy (DGEBA, diglycidyl ether of bisphenol A)/anhydride resin with polyamide copolymer, poly(dimmer acid-co-alkyl polyamine), were studied using differential scanning calorimetry (DSC) under isothermal condition. On increasing the amount of polyamide copolymer in the blends, the reaction rate was increased and the final cure conversion was decreased. Lower values of final cure conversions in the epoxy/(polyamide copolymer) blends indicate that polyamide hinders the cure reaction between the epoxy and the curing agent. The value of the reaction order, m, for the initial autocatalytic reaction was not affected by blending polyamide copolymer with epoxy resin, and the value was approximately 1.3, whereas the reaction order, n, for the general n-th order of reaction was increased by increasing the amount of polyamide copolymer in the blends, and the value increased from 1.6 to 4.0. A diffusion-controlled reaction was observed as the cure conversion increased and the rate equation was successfully analyzed by incorporating the diffusion control term for the epoxy/anhydride/(polyamide copolymer) blends. Complete miscibility was observed in the uncured blends of epoxy/(polyamide copolymer) up to 120 $^{\circ}C$, but phase separations occurred in the early stages of the curing process at higher temperatures than 120 "C. During the curing process, the cure reaction involving the functional group in polyamide copolymer was detected on a DSC thermogram.gram.

EFFECT OF SOFT-START CURING ON THE CONTRACTION STRESS OF COMPOSITE RESIN RESTORATION POLYMERIZED WITH LED AND PLASMA CURING UNIT (LED와 플라즈마 광원의 완속기시 광중합 방식이 복합레진의 수축응력에 미치는 영향)

  • Chung, Yang-Seok;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.4
    • /
    • pp.623-631
    • /
    • 2007
  • Effect of Soft-start curing on the contraction stress of composite resin restoration polymerized with LED and plasma curing unit The purpose of this study was to evaluate the influence of soft-start light curing on contraction stress and hardness of composite resin. Composite resin (Filtek $Z-250^{TM}$, 3M ESPE, USA) was cured using the one-step continuous curing method with three difference light sources ; conventional halogen light ($XL3000^{TM}$, 3M ESPE, USA) cure for 40 seconds at $400 mw/cm^2$, LED light (Elipar Freelight $2^{TM}$, 3M-ESPE, USA) cure for 20 seconds at $800\;mW/cm^2$ a and plasma arc light ($Flipo^{TM}$, LOKKI, France) cure for 12 seconds at $1300 mW/cm^2$. For the soft-start curing method ; LED light (Elipar Freelight $2^{TM}$, 3M-ESPE, USA) cure exponential increase with 5 seconds followed by 17 seconds at $800\;mW/cm^2$ and plasma arc light ($Flipo^{TM}$, LOKKI, France) cure 2 seconds light exposure at $650\;mW/cm^2$ followed by 11 seconds at $1300\;mW/cm^2$. The strain guage method was used for determination of polymerization contraction. Measurements were recorded at each 2 second for the total of 800 seconds including the periods of light application. Obtained data were analyzed statically using Repeated measures ANOVA, One way ANOVA, and Tukey test. The results of present study can be summarized as follows: 1. Composite resin restoration showed transient expansion just after irradiation of curing light. Contraction stress was increased rapidly at the early phase of polymerization and reduced slowly as time elapsed (P<0.05). 2. Contraction stress was not revealed significant difference between Halogen curing light groups and LED and Plasma Light curing with soft-start group (P>0.05). 3. LED and Plasma Light curing with soft-start showed lower contraction stress than the one-step continuous light curing (P<0.05).

  • PDF

EFFECT OF STEP CURING ON THE CONTRACTION STRESS AND MARGINAL ADAPTATION OF RESIN RESTORATION (단계별 광중합 방식이 복합레진 수복물의 수축 응력과 변연 접합도에 미치는 영향)

  • Park, Jong-Whi;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.2
    • /
    • pp.221-232
    • /
    • 2006
  • The purpose of this study was to investigate the effect of step-curing mode on polymerization shrinkage and contraction of composite resin restoration. Class I cavities were prepared on the extracted human premolars. The cavities were ailed with Filtek $Z-250^{TM}$ (hybrid resin, 3M ESPE, USA) and Filtek $flow^{TM}$ (flowable resin, 3M ESPE, USA) and cured with one of the following irradiation modes; Halogen 40sec with continuous curing, LED 10sec with continuous curing, and LED 13sec with step-curing. Contraction stress was measured with strain gauge which was connected to TML $Datalogger^{TM}$ (TDS-102, SOKKI, Japan) and resin-dentin interfaces were observed by scanning electron microscope. The results of present study can be summarized as follows : 1. Composite resin restoration showed transient expansion just after irradiation of curing light. Contraction stress was increased rapidly at the early phase of polymerization and reduced slowly as time elapsed (P<0.05) 2. $Filtek\;flow^{TM}$ showed lower contraction stress than Filtek $Z-250^{TM}$ regardless of curing modes. 3. LED step-curing mode showed lowest contraction stress in Filtek $Z-250^{TM}$ compared with other curing modes(P<0.05). 4. LED step-curing mode showed lowest contraction stress in $Filtek\;flow^{TM}$ compared with other curing modes(P<0.05), but difference in contraction stress was not so greate as in $Filtek\;Z-250^{TM}$. 5. Polymerization of composite resin by LED light with step-curing mode and halogen light with continuous ode resulted in better marginal sealing than LED light with continuous mode.

  • PDF

A Study on the dynamic viscoelasticity of UV curing polymer and alkyd resin composite materials (UV경화성 수지와 Alkyd수지 복합재료의 경화거동과 동적 점탄성에 관한 연구)

  • 정원식;최정병;김용욱
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.16 no.3
    • /
    • pp.29-41
    • /
    • 1998
  • The ultraviolet(UV)-curable materials wildly have been used as a ink and coating materials. A according to measure UV polymerization phase separation of acryl groups 2,3,4-functional monomer, a few experiments were performed gel fraction, dynamic viscosity of alkyd resin blend system. Dependence of photoiniator concentration and various monomer, alkyd resin content investigated structural changes of films cured by UV irradiation. Curing rate measured UV irradiation under $25^{\circ}C$, cell gap 7cm and film thickness 100${\mu}{\textrm}{m}$. In results, it was through that the viscoelastic properties of films cured with increasing the ratios of monomer/alkydresin contents are network polymer in properties such as viscoelasticity.

  • PDF

Strength Behaviour and Hardening Mechanism of Chemical Bonded Fly Ash Mortar (화학적 결합에 의한 Fly ash 경화체의 강도 발현 메카니즘)

  • Jo Byung Wan;Moon Rin Gon;Park Seung Kook;Ko Hee Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.373-376
    • /
    • 2005
  • The discharge of fly ash that is produced by coal-fired electric power plants is rapidly increasing in Korea. The utilization of fly ash in the raw materials would contribute to the elimination of an environmental problem and to the development of new high-performance materials. Fly ash consists of a glass phase. As it is produced from high temperature, it is a chemically stable material. Fly ash mostly consists of $SiO_{2}$ and $Al_{2}O_{3}$, and it assumes the form of an oxide in the inside of fly ash. Because this reaction has not broken out by itself, it is need to supply it with additional $OH^{-}$ through alkali activators. We used alkali activators for supplying it with additional $OH^{-}$. This paper concentrated on the strength development according to the kind of chemical activators, the curing temperature, the heat curing time.

  • PDF

Laboratory investigation for engineering properties of sodium alginate treated clay

  • Cheng, Zhanbo;Geng, Xueyu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.465-477
    • /
    • 2022
  • The formation of biopolymer-soil matrices mainly depends on biopolymer type and concentration, soil type, pore fluid and phase transfer to influence its strengthening efficiency. In this study, the physical and mechanical properties of sodium alginate (SA) treated kaolinite are investigated through compaction test, thread rolling teat, fall cone test and unconfined compression test with considering biopolymer concentration, curing time, initial water content, mixing method. The results show that the liquid limit slightly decreases from 69.9% to 68.3% at 0.2% SA and then gradually increases to 98.3% at 5% SA. At hydrated condition, the unconfined compressive strength (UCS) of SA treated clay at 0.5%, 1%, 2% and 3% concentrations is 2.57, 4.5, 7.1 and 5.48 times of untreated clay (15.7 kPa) at the same initial water content. In addition, the optimum biopolymer concentration, curing time, mixing method and initial water content can be regarded as 2%, 28 days, room temperature water-dry mixing (RD), 50%-55% to achieve the maximum unconfined compressive strength, which corresponds to the UCS increment of 593%, compared to the maximum UCS of untreated clay (780 kPa).

Fabrication of lightweight geopolymer based on the IGCC slag (IGCC 용융 슬래그를 이용한 경량 지오폴리머 제조)

  • Park, Soo-bin;Kim, Kang-duk;Kang, Seung-gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.319-326
    • /
    • 2017
  • In this study, a lightweight geopolymer was prepared using by slag discharged from IGCC (Integrated Gasification Combined Cycle) power plant and its physical properties, the density and compressive strength, were analyzed as a function of the concentration of alkali activators, W/S ratio and aging times. Also the possibility of applying it to lightweight materials by adding Si sludge as a foaming agent to the geopolymerg was investigated. In particular, a complex composition of alkali activator and a pre-curing process were applied to improve the strength properties of lightweight geopolymers. While the compressive strength of the lightweight geopolymer using a single activator was 9.5 MPa, the specimen made with a complex composition of alkali activator had compressive strength of 2~5 times higher. In addition, the lightweight geopolymer with pre-curing process showed a compressive strength value of 18~48 % higher than that of specimen made with no precuring process. In this study, by using a complex activator and a pre-curing process. the maximum compressive strength of lightweight geopolymer was obtained as 40 MPa (The specimen was aged for 3 days and had density of $1.83g/cm^3$), which is comparable to cement concrete. By analyzing the crystal phase and microstructure of geopolymers obtained in this study using by XRD and SEM, respectively, it was confirmed that the flower-bud-like zeolite crystal was homogeneously distributed on the surface of the C-S-H gel (sodium silicate hydrate gel) in the geopolymer.