• Title/Summary/Keyword: Curing level

Search Result 291, Processing Time 0.025 seconds

Changes in the Composition of Essential Oils during Air-Curing Process of Burley 21 Tobacco (Burley 21 잎담배에서 건조기간중의 정유성분 조성의 변화)

  • Hong, Yeol;Lim, Heung-Bin
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.25 no.1
    • /
    • pp.39-46
    • /
    • 2003
  • The essential oils from Burley 21 tobacco was isolated by using the SDE (Simultaneous Distillation & Extraction) apparatus coupled with gas chromatography and mass spectrometry analysis. Burley 21 tobaccos were divided and collected by six stages at intervals of five days during air-curing process. Air curing was conducted with horizontal hanging method in greenhouse settled by shading materials. 55 components were identified by comparisons of retention indices and mass spectral data, including 22 hydrocarbons, 6 alcohols, 3 aldehydes, 9 ketones and 15 miscellaneous compounds. Neophytadiene was the major components of the oils and almost all hydrocarbons were gradually decreased during air-curing process. Most of alcohols were also diminished, on the contrary, 1-pentanol and benzyl alcohol among them were increased. Aldehydes and ketones were increased during air-curing and especially, the concentrations of solanone, $\beta$-damascone, $\beta$-damascenone and megastigmatrienones were much increased. Indole level of miscellaneous compounds were continuously increased during air-curing of Burley 21 tobacco.

Effect of dentin pretreatment and curing mode on the microtensile bond strength of self-adhesive resin cements

  • Youm, Seung-Hyun;Jung, Kyoung-Hwa;Son, Sung-Ae;Kwon, Yong-Hoon;Park, Jeong-Kil
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.317-322
    • /
    • 2015
  • PURPOSE. The aim was to evaluate the effect of curing mode and different dentin surface pretreatment on microtensile bond strength (${\mu}TBS$) of self-adhesive resin cements. MATERIALS AND METHODS. Thirty-six extracted human permanent molars were sectioned horizontally exposing flat dentin surface. The teeth were divided into 12 groups (3 teeth/group) according to the dentin surface pretreatment methods (control, 18% EDTA, 10% Polyacrylic acid) and curing mode (self-curing vs. light-curing) of cement. After pretreatment, composite resin blocks were cemented with the following: (a) G-CEM LinkAce; (b) RelyX U200, followed by either self-curing or light-curing. After storage, the teeth were sectioned and ${\mu}TBS$ test was performed using a microtensile testing machine. The data was statistically analyzed using one-way ANOVA, Student T-test and Scheffe's post-hoc test at P<.05 level. RESULTS. For G-CEM LinkAce cement groups, polyacrylic acid pretreatment showed the highest ${\mu}TBS$ in the self-cured group. In the light-cured group, no significant improvements were observed according to the dentin surface pretreatment. There were no significant differences between curing modes. Both dentin surface pretreatment methods helped to increase the ${\mu}TBS$ of RelyX U200 resin cement significantly and degree of pretreatment effect was similar. No significant differences were found regarding curing modes except control groups. In the comparisons of two self-adhesive resin cements, all groups within the same pretreatment and curing mode were significantly different excluding self-cured control groups. CONCLUSION. Selecting RelyX U200 used in this study and application of dentin surface pretreatment with EDTA and polyacrylic acid might be recommended to enhance the bond strength of cement to dentin.

A Study on the Effect of Shrinkage on Lens Deformation in Optical Lens Manufacturing Process Using Thermosetting Resin Material (열경화성 수지 재료를 이용한 광학 렌즈 제조공정에서 렌즈 변형에 대한 수축률이 영향에 관한 연구)

  • Park, Si Hwan
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.9-15
    • /
    • 2022
  • In order to reduce the manufacturing costs of the glass lens, it is necessary to manufacture a lens using a UV curable resin or a thermosetting resin, which is a curable material, in order to replace a glass lens. In the case of forming a lens using a thermosetting material, it is necessary to form several lenses at once using the wafer-level lens manufacturing technologies due to the long curing time of the material. When a lens is manufactured using a curable material, an error in the shape of the lens due to the shrinkage of the material during the curing process is an important cause of defects. The major factors for these shape errors and deformations are the shrinkage and the change of mechanical properties in the process of changing from a liquid material during curing to a solid state after complete curing. Therefore, it is necessary to understand the curing process of the material and to examine the shrinkage rate and change of physical properties according to the degree cure. In addition, it is necessary to proceed with CAE for lens molding using these and to review problems in lens manufacturing in advance. In this study, the viscoelastic properties of the material were measured during the curing process using a rheometer. Using the results, Rheological investigation of cure kinetics was performed. At the same time, The shrinkage of the material was measured and simple mathematical models were created. And using the results, the molding process of a single lens was analyzed using Comsol, a commercial S/W. In addition, the experiment was conducted to compare and verify the CAE results. As a result, it was confirmed that the shrinkage rate of the material had a great influence on the shape precision of the final product.

Influence of $Na_2SO_4$ on Cement-flyash Paste and the Strength Development of Concrete ($Na_2SO_4$가 시멘트-플라이애쉬 페이스트 및 콘크리트 강도에 미치는 영향)

  • Lee, Chin-Yong;Bae, Sung-Yong;Song, Jong-Taek
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.85-94
    • /
    • 1999
  • It was investigated to evaluate the characteristics of cement-flyash paste which was affected the replacement level, curing method and chemical admixtures. The strength of cement-flyash paste was lower than that of cement paste only and the differences increased with increasing the replacement level. However, in steam curing, the strength of cement-flyash pastes was improved and specially, the early strength was effectively increased. The inclusion of $Na_2SO_4$ increased the early strength of cement-flyash paste. In addition, the strength of concrete including 30% of fly ash and $Na_2SO_4$ has improved and obtained the highest strength compared to other concrete mixes.

Flexural properties of a light-cure and a self-cure denture base materials compared to conventional alternatives

  • Mumcu, Emre;Cilingir, Altug;Gencel, Burc;Sulun, Tonguc
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.136-139
    • /
    • 2011
  • PURPOSE. A new light curing urethane dimethacrylate and a cold curing resin with simpler and faster laboratory procedures may have even improved flexural properties. This study investigated the 3-point flexural strengths and flexural moduli of two alternate base materials. MATERIALS AND METHODS. A cold curing resin (Weropress) and a light curing urethane dimethacrylate base material (Eclipse). Along with Eclipse and Weropress, a high impact resin (Lucitone199) and three conventional base materials (QC 20, Meliodent and Paladent 20) were tested. A 3-point bending test was used to determine the flexural strengths and flexural moduli. The mean displacement, maximum load, flexural modulus and flexural strength values and standard deviations for each group were analyzed by means of one-way analysis of variance (ANOVA) (with mean difference significant at the 0.05 level). Post hoc analyses (Scheffe test) were carried out to determine the differences between the groups at a confidence level of 95%. RESULTS. Flexural strength, displacement and force maximum load values of Eclipse were significantly different from other base materials. Displacement values of QC 20 were significantly different from Lucitone 199 and Weropress. CONCLUSION. The flexural properties and simpler processing technique of Eclipse system presents an advantageous alternative to conventional base resins and Weropress offers another simple laboratory technique.

Effects of High Temperature Maintenance Time and Curing Method on Compressive Strength of FA Large Volume Replacement Mortar after Application of Resuscitation Material (소생재 도포 후 고온 유지시간 및 양생방법 변화가 Fly Ash 다량치환 모르타르의 압축강도에 미치는 영향)

  • Choi, Yoon-Ho;Lee, Hyuk-Ju;Lee, Young-Jun;Hyun, Seung-Yong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.141-142
    • /
    • 2019
  • In this study, we conducted a comparative analysis of the effects of retention time and resuscitation method on the degree of resuscitation after reapplying mortar with much FA replacement. Results After applying NaOH to the top surface of 60 % FA-substituted mortar, the degree of resuscitation at $40^{\circ}C$ was high enough to increase the overall curing time, but there was no significant difference. However, with regard to the curing method, middle curing showed the greatest manifestation, followed by wrapping and underwater curing, but there was no significant difference. The resuscitation level on the 28th of the lumber was found to be revived to about 70~80 % at around 30 % without resuscitation.

  • PDF

Effects of Curing Temperature and Times on Chemical Properties and Palatability of Cured Boiled Pork Loins (염지 온도와 기간이 삶은 돼지고기 등심의 이화학적 특성과 기호성에 미치는 영향)

  • 현재석;강희곤;김미숙;정인철;문윤희
    • Food Science of Animal Resources
    • /
    • v.23 no.1
    • /
    • pp.32-38
    • /
    • 2003
  • The effects of curing temperatures(1, 5 and 10$^{\circ}C$) and times on the chemical properties and palatability of cured pork loins which were cured in the 7% curing solution were investigated. The pork loins cured at 10$^{\circ}C$ curing temperature showed the decreased level of pH and water holding capacity up to 15 days of curing time. The growth of bacteria in the curing solution and surface region of cured loins, cured at 10$^{\circ}C$ were rapid after 12 days of curing. However, bacteria were not detected(<0.05${\times}$10$^2$ CFU/g) in the central region of cured loin until 15 days of curing. The penetration of salt into the central region of cured loins was faster at 10$^{\circ}C$ curing temperature than at lower curing temperatures for all curing times. The difference of salt contents between surface and central regions in the cured loins was less at higher temperature than at lower temperatures, and the difference decreased in boiling process for all curing times. The color fixation of the cured boiled loins was better at 5 and 10$^{\circ}C$ curing temperatures than at 1$^{\circ}C$. The sensory scores for saltiness and flavor of the cured boiled pork loins were higher at higher temperature than at lower temperatures until 9∼12 days of curing. Palatable cured boiled pork loins could be produced under the curing solution at low temperatures of 1 and 5$^{\circ}C$ for 12 and 9 days, respectively.

Effect of Stem Drying Method during Curing Process on Physico-chemical Properties in Bulk Cured Leaves (Bulk건조에서 주맥건조방법이 잎담배 이화학성에 미치는 영향)

  • 이철환;이병철;진정의
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.2
    • /
    • pp.133-137
    • /
    • 2000
  • The bulk curing experiment to improve the quality of flue-cured leaves were carried out to evaluate relationship between the modified(3 step-up) drying and conventional drying method in bulk curing process. Modified drying method was somewhat higher values in yellowing color index of cured leaves, and less brittle than those in conventional drying program. As to the chemical properties, there was no difference in chemical component levels in cured leaves between the modified and the conventional methods, while the major chemical compounds in relation to aromatic essential oil of cured leaves showed mostly higher level in the modified method than that in conventional drying method. Additionally 3 step-up drying method increased the tobacco quality by 2 % in price per kg compared with conventional drying method.

  • PDF

Relationship between battery level and irradiance of light-curing units and their effects on the hardness of a bulk-fill composite resin

  • Fernanda Harumi Oku Prochnow ;Patricia Valeria Manozzo Kunz;Gisele Maria Correr;Marina da Rosa Kaizer;Carla Castiglia Gonzaga
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.4
    • /
    • pp.45.1-45.10
    • /
    • 2022
  • Objectives: This study evaluated the relationship between the battery charge level and irradiance of light-emitting diode (LED) light-curing units (LCUs) and how these variables influence the Vickers hardness number (VHN) of a bulk-fill resin. Materials and Methods: Four LCUs were evaluated: Radii Plus (SDI), Radii-cal (SDI), Elipar Deep Cure (Filtek Bulk Fill, 3M Oral Care), and Poly Wireless (Kavo Kerr). Irradiance was measured using a radiometer every ten 20-second activations until the battery was discharged. Disks (4 mm thick) of a bulk-fill resin (Filtek Bulk Fill, 3M Oral Care) were prepared, and the VHN was determined on the top and bottom surfaces when light-cured with the LCUs with battery levels at 100%, 50% and 10%. Data were analyzed by 2-way analysis of variance, the Tukey's test, and Pearson correlations (α = 5%). Results: Elipar Deep Cure and Poly Wireless showed significant differences between the irradiance when the battery was fully charged versus discharged (10% battery level). Significant differences in irradiance were detected among all LCUs, within each battery condition tested. Hardness ratios below 80% were obtained for Radii-cal (10% battery level) and for Poly Wireless (50% and 10% battery levels). The battery level showed moderate and strong, but non-significant, positive correlations with the VHN and irradiance. Conclusions: Although the irradiance was different among LCUs, it decreased in half of the devices along with a reduction in battery level. In addition, the composite resin effectiveness of curing, measured by the hardness ratio, was reduced when the LCUs' battery was discharged.

Thermal Curing Behavior and Tensile Properties of Resole Phenol-Formaldehyde Resin/Clay/Cellulose Nanocomposite

  • Park, Byung-Dae;Kadla, John F.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.110-122
    • /
    • 2012
  • This study investigated the effects of layered clay on the thermal curing behavior and tensile properties of resole phenol-formaldehyde (PF) resin/clay/cellulose nanocomposites. The thermal curing behavior of the nanocomposite was characterized using conventional differential scanning calorimetry (DSC) and temperature modulated (TMDSC). The addition of clay was found to accelerate resin curing, as measured by peak temperature ($T_p$) and heat of reaction (${\Delta}H$) of the nanocomposite’ curing reaction increasing clay addition decreased $T_p$ with a minimum at 3~5% clay. However, the reversing heat flow and heat capacity showed that the clay addition up to 3% delayed the vitrification process of the resole PF resin in the nanocomposite, indicating an inhibition effect of the clay on curing in the later stages of the reaction. Three different methods were employed to determineactivation energies for the curing reaction of the nanocomposite. Both the Ozawa and Kissinger methods showed the lowest activation energy (E) at 3% clay content. Using the isoconversional method, the activation energy ($E_{\alpha}$) as a function of the degree of conversion was measured and showed that as the degree of cure increased, the $E_{\alpha}$ showed a gradual decrease, and gave the lowest value at 3% nanoclay. The addition of clay improved the tensile strengths of the nanocomposites, although a slight decrease in the elongation at break was observed as the clay content increased. These results demonstrated that the addition of clay to resole PF resins accelerate the curing behavior of the nanocomposites with an optimum level of 3% clay based on the balance between the cure kinetics and tensile properties.