• Title/Summary/Keyword: Curing level

Search Result 293, Processing Time 0.025 seconds

Wafer Level Package Design Optimization Using FEM (공정시간 및 온도에 따른 웨이퍼레벨 패키지 접합 최적설계에 관한 연구)

  • Ko, Hyun-Jun;Lim, Seung-Yong;Kim, Hee-Tea;Kim, Jong-Hyeong;Kim, Ok-Rae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.230-236
    • /
    • 2014
  • Wafer level package technology is added to the surface of wafer circuit packages to create a semiconductor technology that can minimize the size of the package. However, in conventional packaging, warpage and fracture are major concerns for semiconductor manufacturing. We optimized the wafer dam design using a finite element method according to the dam height and heat distribution thermal properties. The dam design influences the uniform deposition of the image sensor and prevents the filling material from overflowing. In this study, finite element analysis was employed to determine the key factors that may affect the reliability performance of the dam package. Three-dimensional finite element models were constructed using the simulation software ANSYS to perform the dam thermo-mechanical simulation and analysis.

Development of Material Switching System for Microstructure with Multiple Material in Projection Microstereolithography (전사방식 마이크로 광 조형에서 복합 재료의 미세구조물 제작을 위한 수지 교한 시스템 개발)

  • Jo, Kwang-Ho;Park, In-Baek;Ha, Young-Myoung;Kim, Min-Sub;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.1000-1007
    • /
    • 2011
  • For enlarging the applications of microstereolithography, the use of diverse materials is required. In this study, the material switching system (MSS) for projection microstereolithography apparatus is proposed. The MSS consists of three part; resin level control, resin dispensing control, and vat level control. Curing characteristic of materials used in fabrication has been identified. Through repeated fabrication of test models, the critical fabrication error is investigated and a possible solution to this error is suggested. The developed system can be applied to improve the strength of microstructure and extended to fabricate an array of microstructures with multiple materials.

A Proposal of Stress-Strain Relations Model for Recycled-PET Polymer Concrete under Uniaxial Stress (일축 하중을 받는 PET 재활용 폴리머콘크리트의 응력-변형률 모델의 제안)

  • Jo Byung-Wan;Moon Rin-Gon;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.767-776
    • /
    • 2004
  • Polymer concrete shows excellent mechanical properties and chemical resistance compared with conventional normal cement concrete. The polymer concrete is drawing a strong interest as high-performance materials in the construction industry. Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. Also the recycling of PET in polymer concrete would help solve some of the solid waste problems posed by plastics and save energy. The purposed of this paper is to propose the model for the stress-strain relation of recycled-PET polymer concrete at monotonic uniaxial compression and is to investigate for the stress-strain behavior characteristics of recycled-PET polymer concrete with different variables(strength, resin contents, curing conditions, addition of silane and ages). The maximum stress and strain of recycled-PET polymer concrete was found to increase with an increase in resin content, however, it decreased beyond a particular level of resin content. A ascending and descending branch of stress-strain curve represented more sharply at high temperature curing more than normal temperature curing. Addition of silane increases compressive strength and postpeak ductility. In addition, results show that the proposed model accurately predicts the stress-strain relation of recycled-PET polymer concrete

Optical characteristics of resin composite before and after polymerization (광중합 전후 복합레진의 광학적 특성)

  • Eom, Ah-Hyang;Kim, Duck-Su;Lee, Soo-Hee;Byun, Chang-Won;Park, Noh-Hoon;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.3
    • /
    • pp.219-230
    • /
    • 2011
  • Objectives: The aim of this study was to evaluate the optical characteristics such as color and translucency changes before and after light curing, to quantify the CQ and to measure refractive indices of body and opaque shade of resin composites materials. Materials and Methods: Resin composites used in this study were A2 body and A2 opaque shade of Esthet-X, Filtek supreme, Gradia Direct, Clearfil Majesty and Beautifil II. Color and translucency changes before and after light curing were evaluated by colorimeter, the CQ was quantified by GC-MS and refractive index changes were measured by spectroscopic ellipsometer. Results: Translucency parameter (TP) was significantly increased after curing. The CQ content of body shades are higher than that of opaque shades in all resin composites. Refractive index increased after polymerization in all materials and significant difference in ${\Delta}$refractive index was found between body and opaque shade (significance level 0.05). Conclusions: For an accurate shade match, direct shade matching of resin composite should be performed by using the cured material.

Evaluation on Workability and Compressive Strength Development of Concrete Using Modified Fly-Ash by Vibration Grinding (진동분쇄를 사용한 개질 플라이애시 콘크리트의 유동성 및 압축강도 발현 평가)

  • Ahn, Tae-Ho;Yang, Keun-Hyeok;Jeon, Young-Su
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.66-74
    • /
    • 2021
  • The objective of this study is to evaluate the practical application potential and limitations of the modified fly ash(MFA) by vibration grinding as a partial replacement of ordinary portland cement(OPC). The test parameters investigated were the replacement level of fly ash(FA) and FA for OPC, varying from 10% to 40%, and curing temperatures of 5, 20, and 40℃. The various characteristics(including slump, air content, bleeding, setting time, compressive strength development, and hydration products) of MFA concrete were measured and then compared with those of the concrete with conventional FA. Test resul ts showed that the MFA prefers to FA in reducing the bl eeding of fresh concrete and enhancing the compressive strength gain at an early age. The compressive strength ratios between MFA and FA concrete specimens at an age of 1 day were 135%, 146%, and 111% at the curing temperatures of 5, 20, and 40℃, respectively. The corresponding ratios at an age of 28 days were approximately 110%, regardless of the curing temperatures. The X-ray diffraction analysis also revealed less calcium hydroxide products in MFA pastes than in FA pastes.

A Fundamental Study on the Load Resistance Characteristics of Revetment Concrete Block with Recycled Concrete Aggregate and GFRP Rebar (순환골재와 GFRP 보강근을 적용한 호안블럭의 하중저항특성에 관한 연구)

  • Kim, Yongjae;Kim, Jongho;Moon, Doyoung
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.42-51
    • /
    • 2022
  • Aggregate resources in Korea are expected to run out owing to an increase in development demand and construction investment. Recycled concrete aggregates (RCA), extracted from waste concrete, have a lower quality than natural aggregates. However, RCA can produce concrete similar in quality to the normal concrete by aggregate pretreatment, use of admixtures, and quality control. RCA are most suitable for use in precast concrete products such as sidewalk blocks and revetment blocks. Herein, the feasibility of producing revetment blocks using recycled aggregate concrete (RAC), similar in quality to normal concrete, was analyzed. The amount of RCA was varied, and moderate high early strength cement and steam curing were used to produce the concrete test blocks. In the block test, the load resistance characteristics of the blocks were evaluated to determine optimal RAC and glass fiber reinforced polymer (GFRP) rebar compositions. Thus, the variable that reduced the cement content was determined at the same level as that of natural aggregate concrete by the control of steam curing. In the concrete block test, although this depends on the reinforcement ratio, the RAC block exhibited the same or better performance than a normal concrete block. Therefore, the low quality of RCA in RAC is no longer a problem when concrete mixing and curing are controlled and appropriate reinforcement is used.

Effects of Dielectric Curing Temperature and T/H Treatment on the Interfacial Adhesion Energies of Ti/PBO for Cu RDL Applications of FOWLP (FOWLP Cu 재배선 적용을 위한 절연층 경화 온도 및 고온/고습 처리가 Ti/PBO 계면접착에너지에 미치는 영향)

  • Kirak Son;Gahui Kim;Young-Bae Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.52-59
    • /
    • 2023
  • The effects of dielectric curing temperature and temperature/humidity treatment conditions on the interfacial adhesion energies between Ti diffusion barrier/polybenzoxazole (PBO) dielectric layers were systematically investigated for Cu redistribution layer applications of fan-out wafer level package. The initial interfacial adhesion energies were 16.63, 25.95, 16.58 J/m2 for PBO curing temperatures at 175, 200, and 225 ℃, respectively. X-ray photoelectron spectroscopy analysis showed that there exists a good correlation between the interfacial adhesion energy and the C-O peak area fractions at PBO delaminated surfaces. And the interfacial adhesion energies of samples cured at 200 ℃ decreased to 3.99 J/m2 after 500 h at 85 ℃/85 % relative humidity, possibly due to the weak boundary layer formation inside PBO near Ti/PBO interface.

Thermal Residual Stress Analysis of Fiber Reinforced Metal Laminate (섬유강화금속적층판(FRML)의 열응력 해석)

  • 김위대;양승희
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.61-64
    • /
    • 2002
  • Fiber reinforced metal laminate(FRML) consists of alternations layers of metal and fiber reinforced composite. The difference in the coefficients of thermal expansion between metal and composite layer produces remarkable amount of thermal residual stresses between layers. Generally, FRML shows a tensile stress in metal layers, a compressive stress in composite layers after curing. In this study, the thermal residual stresses of several types of FRML are investigated to get the best combination of metal and composite which can reduce the thermal residual stresses. The residual stress level is compared with the strength of each layers to explain the fracture mechanism of FRML.

  • PDF

Long-Term Performance of High Strength Concrete

  • Choi Yeol;Kang Moon-Myung
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.425-431
    • /
    • 2004
  • This paper describes an experimental investigation of how time-dependent deformations of high strength concretes are affected by maximum size of coarse aggregate, curing time, and relatively low sustained stress level. A set of high strength concrete mixes, mainly containing two different maximum sizes of coarse aggregate, have been used to investigate drying shrinkage and creep strain of high strength concrete for 7 and 28-day moist cured cylinder specimens. Based upon one-year experimental results, drying shrinkage of high strength concrete was significantly affected by the maximum size of coarse aggregate at early age, and become gradually decreased at late age. The larger the maximum size of coarse aggregate in high strength concrete shows the lower the creep strain. The prediction equations for drying shrinkage and creep coefficient were developed on the basis of the experimental results, and compared with existing prediction models.

Effect of Silica Fume and Slag on Compressive Strength and Abrasion Resistance of HVFA Concrete

  • Rashad, Alaa M.;Seleem, Hosam El-Din H.;Shaheen, Amr F.
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.1
    • /
    • pp.69-81
    • /
    • 2014
  • In this study, portland cement (PC) has been partially replaced with a Class F fly ash (FA) at level of 70 % to produce high-volume FA (HVFA) concrete (F70). F70 was modified by replacing FA at levels of 10 and 20 % with silica fume (SF) and ground granulated blast-furnace slag (GGBS) and their equally combinations. All HVFA concrete types were compared to PC concrete. After curing for 7, 28, 90 and 180 days the specimens were tested in compression and abrasion. The various decomposition phases formed were identified using X-ray diffraction. The morphology of the formed hydrates was studied using scanning electron microscopy. The results indicated higher abrasion resistance of HVFA concrete blended with either SF or equally combinations of SF and GGBS, whilst lower abrasion resistance was noted in HVFA blended with GGBS.