• Title/Summary/Keyword: Curing agent

Search Result 427, Processing Time 0.032 seconds

Setting Characteristics of Cement Mortar with Super Retarding Agent Mixing Rate in High Temperature (고온조건에서의 초지연제 혼입율 변화에 따른 모르타르의 응결 특성)

  • Lim, Gun Su;Han, Soo Hwan;Jeong, Yeong Jin;Hyun, Seung Yong;Han, Min Cheol;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.131-132
    • /
    • 2021
  • In this study, as part of the study to reduce and integrate heat of hydration of concrete, the performance change of super retarding agent is examined in the mortar area under high temperature conditions. It was confirmed that the setting time delay can be adjusted from several hours to several days depending on the high temperature and the change of super retarding agent mixing rate. With the increase of super retarding agents, the early age strength was delayed while at 28 days the use of super retarding agent results in an increase of strength remakably.

  • PDF

An Experimental Study on the Characteristics of Compressive Strength of Antiwashout Underwater Concrete with Curing Water (양생수에 따른 수중불분리콘크리트의 압축강도특성에 관한 실험적 연구)

  • 윤재범;고창섭;김명식;장희석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.135-138
    • /
    • 1999
  • The objective of this study is to investigate the compressive strength property of antiwashout underwater concrete with curing water through experimental researches. Type of casting and curing water(fresh water, sea water) are used as main experimental parameter, additionally a few variables affecting compressive strength property are used ; water-cement ratio (45%, 48%, 50%, 52%, 55%), and unit weight of admixtures (antiwashout underwater agent ; 0.6%, 0.8%, 1.0%, 1.2%, 1.4% of unit weight of water, superplasticizer ; 0.5%, 1.0%, 1.5%, 2.0%, 2.5% of unit weight of cement)) Compressive strength level of antiwashout underwater concrete which was cast and cured in fresh water is higher than other one. Consequently, incremental modulus has to increase when the antiwashout underwater concrete is made use of underwater work from ocean.

  • PDF

Studies on Curing Behavior and Fracture Toughness of Tetrafunctional Epoxy Resin/Fluorine-containing Epoxy Resin Blend System (4관능성 에폭시 수지/불소를 함유한 에폭시 수지 블렌드 시스템의 경화거동 및 파괴인성에 관한 연구)

  • Jin, Fan-Long;Lee, Jae-Rock;Park, Soo-Jin;Shin, Jae-Sup
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.273-275
    • /
    • 2002
  • In this studies, curing behavior and mechanical properties of tetrafunctional epoxy resin (4EP)/ fluorine-containing epoxy resin (FEP) blend systems was investigated with 4, 4'-diaminodiphenol methane (DDM) as a curing agent. The cure activation energies $(E_a)$) were studied by Flynn-Wall-Ozawa's equation with dynamic DSC method. For the fracture toughness of the casting specimens, the critical stress intensity factor ($K_{IC}$) and the specific fracture energy ($G_{IC}$) were determined by fracture toughness test.

  • PDF

The Improvement of Surface Layer Using Cement-hardening Agents in Dredged and Reclaimed Marine Clay (준설매립된 해성점성토에서 시멘트계 고화재를 이용한 표층개량)

  • NAM JUNG-MAN;YUN JUNG-MANN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.46-51
    • /
    • 2004
  • The surface layer in dredged and reclaimed marine clay is improved by mixing of shallow soils and hardening agents, which is made of cement, containing some other special admixtures. Tests in both laboratory and field settings are performed to investigate the improvement effect and strength properties of cement-stabilized soils. The test results show that the hardening agent sufficiently improves the soil properties of the surface layer, while increasing the load-carrying capacity. The strength of cement-stabilized soils depends, primarily, on water-to-cement ratio and curing temperature. That is, the higher curing temperature and the longer curing time, the higher the strength in cement-stabilized soils. The high ratio of water-ta-cement results in a lower strength.

Effect of cobalt ferrite on curing and electromagnetic properties of natural rubber composites

  • Anuchit Hunyek;Chitnarong Sirisathitkul
    • Advances in materials Research
    • /
    • v.12 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • The combination of cobalt ferrite and natural rubber has a potential to enhance the functional properties of rubber ferrite composites available on the market. In this study, cobalt ferrite was synthesized by the sol-gel method with tapioca starch as a cheating agent and then incorporated into natural rubber using an internal mixer. The curing characteristics, magnetic hysteresis, complex permeability, and permittivity of the rubber ferrite composites were studied as a function of the loading from 0 to 25 phr. The cure time and scorch time tended to reduce with the addition of non-reinforced cobalt ferrite fillers. The remanent and saturation magnetizations were linearly proportional to the cobalt ferrite loading, consistent with the rule of mixture. On the other hand, the increase in cobalt ferrite loading from 5 to 25 phr slightly affected the coercive field and the complex permeability. Using the maximum loading of 25 phr, both real and imaginary parts of the permittivity were significantly raised and reduced with the frequency in the 10-300 MHz range.

The Application of Natural Hydraulic Lime as a Reinforcing Agent for Mural Paintings in Ancient Tombs (천연 수경성 석회(NHL)를 사용한 고분벽화 벽체 보강제 적용성 연구)

  • Yu, Yeong Gyeong;Lee, Hwa Soo
    • Conservation Science in Museum
    • /
    • v.21
    • /
    • pp.29-40
    • /
    • 2019
  • An experimental study was conducted to test the applicability of natural hydraulic lime (NHL) as a reinforcing agent for the supporting layers of mural paintings in ancient tombs.Drawing upon preceding studies on mural paintings inancient tombs, samples of reinforcing agents for various conditions were prepared using NHL products, and pseudo-samples of the supporting layers of mural paintings were also produced. The samples were cured for 7, 28, and 84 days in a high-humidity condition similar to that of the mural-tomb environment. Physical properties such as dimensional stability and compressive strength were measured for each curing period.The results indicated that the NHL samples had a rapid curing speed and a low contraction ratio and are therefore suitable as reinforcing agents, whereas they showed a poor match in terms of strength compared to the supporting layer,and also low whiteness. The dimensional stability and compressive strength testsrevealedthat an NHL product mixed with a pseudo-sample of a supporting layer provided desirable conditions for reinforcing agent. The findings suggested that different conditions for curing time and strength should be considered for each supporting layer prior to applying NHL as a reinforcing agent for damaged mural paintings in ancient tombs.

Curing Behavior of Phenolic Resin with Humid Atmosphere on The Porous $ZrO_2$ ceramics

  • Yun, Sang-Hyeon;Kim, Jang-Hun;Kim, Ju-Yeong;Lee, Jun-Tae;Lee, Hui-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.57.1-57.1
    • /
    • 2011
  • The effects of relative humidity on the properties of the porous $ZrO_2$ ceramics were investigated in terms of the curing behavior of phenolic resin as a binder. The $ZrO_2$ powders containing 5wt% of phenolic resin were conditioned in a consistent chamber condition at a temperature of $50^{\circ}C$ and different humidity levels (25, 50, 75, and 95%) for 1 h. The exposure of humid atmosphere caused changes of density and microstructure in the green bodies. The higher level the powders were exposed to the humid atmosphere, the lower green density was obtained and the more irregular microstructure was observed due to aggregation by the curing of phenolic resin. After firing, the porosity of specimens has risen from 35.7% to 38.1% and Young's modulus has declined in response to the variation of green density. These results could be explained by the degree of resin cure which was associated with the area under the exothermic peak enclosed by a baseline of DSC thermogram curve. Also, the curing behavior of phenolic resin according to relative humidity has been confirmed by decrease of ether groups which have interacted with the phenolic-OH group and the hexamine as a curing agent. Consequently, it could be demonstrated that increase the relative humidity during fabrication of porous $ZrO_2$ diminished the compaction and properties of specimens after firing owing to curing of phenolic resin.

  • PDF

Properties of Iron Powder and Activated Carbon mixed Matrix for the Improvement of Cold Weather Concrete (한중콘크리트 개선을 위한 철가루와 활성탄 혼입 경화체 기초연구)

  • Kim, Won-Jong;Kim, Won-Sik;Kim, Gyu-Yong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.175-176
    • /
    • 2022
  • By studying the characteristics of matrix insulated through heat generated through oxidation of iron powder, the basic research results on the possibility of buffering and applicability of Cold weather concrete as a curing method are presented. In order to prevent freezing due to a sharp decrease in temperature in the initial stage of curing, iron powder (Fe), powder activated carbon, which is a small amount of porous carbonaceous adsorbent, and salt (NaCl) as an oxidizing agent are replaced with iron powder admixture. As the curing temperature increases, the strength tends to increase, and when replacing the admixture at the same curing temperature, the strength slightly decreases. This is determined as a result of generating iron oxide through an oxidation reaction of iron powder, activated carbon, and NaCl generating a large amount of pores in the matrix. In addition, the internal temperature tends to increase as the mixing substitution rate increases, and it is judged that the oxidation heat of the iron powder mixture affects the increase of the internal temperature during curing. The higher the replacement rate of the iron powder mixture, the slightly lower the strength, but it is determined that freezing and melting that may occur in the early stage of curing can be prevented due to an increase in the initial internal temperature.

  • PDF

Properties of Strength Development on Cement Mortar Using Agent for Enduring Cold Climate (내한성 혼화제를 이용한 시멘트 모르타르의 강도증진 특성)

  • 홍상희;김현우;심보길;한민철;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.571-574
    • /
    • 2000
  • When fresh concrete is exposed to low temperature, the concrete may suffer from the frost damage at early ages and the strength development may be delayed. To solve such problems of cold weather concreting admixtures called agent for enduring cold climate are developed to prevent the fresh concrete from being frozen at early ages. In this study, the experiments are carried out on several kinds of agent for enduring cold climate to present their performance. According to experimental results, most kinds of agent for enduring cold climate show the strength development in the range $-5^{\circ}C$ of curing temperature, it tends to be delayed at long term maturity without agents for enduring cold climate. while it gains high strength maturity when agents for enduring cold climate is applied.

  • PDF

Setting Properties of Polystyrene Mortars (폴리스티렌 모르타르의 경화특성)

  • 최낙운;오하마요시히코;소양섭;김완영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.793-798
    • /
    • 2003
  • The purpose of this study is to investigate the setting properties of polystyrene mortars using waste expanded polystyrene(EPS) solution-based binders. The binders for polystyrene mortars are made by mixing crosslinking agent with waste EPS solutions which prepared by dissolving EPS in styrene. Polystyrene mortars are prepared with various EPS concentrations of EPS solutions and crosslinking agent contents, subjected to a dry curing, and tested for working life, peak exotherm temperature and 10h-length change. From the test results, the working lives of polystyrene mortars are shortened with raising EPS concentration of EPS solution and crosslinking agent content. Low-shrinkage or non-shrinkage of polystyrene mortars should be accomplished by adjusting EPS concentration of EPS solution and crosslinking agent content.

  • PDF