• Title/Summary/Keyword: Cure reaction

Search Result 179, Processing Time 0.024 seconds

Analysis of cure behavior of low temperature curing liquid silicone rubber (LSR) for multi-material injection molding (이중사출 성형을 위한 저온 경화 액상실리콘고무 (LSR)의 경화 거동 분석)

  • Hyeong-min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2023
  • In multi-material injection molding, since two or more materials with different process conditions are used, it is essential to maximize process efficiency by operating the cooling or heating system to a minimum. In this study, Liquid silicone rubber (LSR) that can be cured at a low temperature suitable for the multi-material injection molding was selected and the cure behavior according to the process conditions was analyzed through differential scanning calorimetry (DSC). Dynamic measurement results of DSC with different heating rate were obtained, and through this, the total heat of reaction when the LSR was completely cured was calculated. Isothermal measurement results of DSC were derived for 60 minutes at each temperature from 80 ℃ to 110 ℃ at 10 ℃ intervals, and the final degree of cure at each temperature was calculated based on the total heat of reaction identified from the Dynamic DSC measurement results. As the result, it was found that when the temperature is lowered, the curing start time and the time required for the curing reaction increase, but at a temperature of 90 ℃ or higher, LSR can secure a degree of cure of 80% or more. However, at 80 ℃., it was found that not only had a relatively low degree of curing of about 60%, but also significantly increased the curing start time. In addition, in the case of 110 ℃, the parameters were derived from experimental result using the Kamal kinetic model.

  • PDF

A Kinetic Study of Biphenyl Type Epoxy-Xylok Resin System with Different Kinds of Catalysts

  • 한승;김환근;윤호규;문탁진
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1199-1203
    • /
    • 1997
  • The investigation of cure kinetics of biphenyl epoxy (4,4-diglycidyloxy-3,3,5,5-tetramethyl biphenyl)-xylok resin system with four different catalysts was performed by differential scanning calorimeter using an isothermal approach. All kinetic parameters of the curing reaction including the reaction order, activation energy and rate constant were calculated and reported. The results indicate that the curing reaction of the formulations using triphenylphosphine (TPP) and 1-benzyl-2-methylimidazole (1B2MI) as a catalyst proceeds through a first order kinetic mechanism, whereas that of the formulations using diazabicyloundecene (DBU) and tetraphenyl phosphonium tetraphenyl borate (TPP-TPB) proceeds by an autocatalytic kinetic mechanism. To describe the cure reaction in the latter stage, we have used the semiempirical relationship proposed by Chern and Poehlein. By combining an nth order kinetic model or an autocatalytic model with a diffusion factor, it is possible to predict the cure kinetics of each catalytic system over the whole range of conversion.

Individual Reaction Mechanisms and Properties of a DGEBA/DDS Epoxy Resin System (DGEBA/DDS 에폭시수지계의 개별적 반응기구 및 물성)

  • Byung-Gak Min
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.73-76
    • /
    • 1999
  • Near infrared spectroscopy techniques were used to study the cure reactions of epoxy resin system based on diglycidyl ether of bisphenol A(DGEBA) resins cured with 4, 4' diaminodiphenyl sulfone (DDS) hardner. Stoichiometric DGEBA/DDS resin formulation was involved in this study. The infrared absorption spectra of the prepared formulation were obtained on an FTIR spectrometer operating in the region of 11000 to 4000$cm^{-l}$. The chemical group peaks of interest in a DFEBA/DDS spectrum were identified by a comparative study with individual spectra of DGEBA and DDS monomers. Where necessary, special model compounds were used to identify unknown bands, such as the primary amine band at 4535$cm^{-l}$. The absorption bands of interest were integrated to quantify the areas and then converted to molar concentrations. This series of quantitative analyses of the major chemical groups led us to understand not only the reaction mechanism but also the cure kinetics. In this paper, the reaction mechanisms observed in stoichiometric DGEBA/DDS resin formulation and the various properties of the resin system as a function of cure temperature are described.

  • PDF

Cure Kinetics of DGEBA/MDA/SN/HQ Thermosetting Matrix (열경화성 DGEBA/MDA/SN/HQ 매트릭스의 경화반응 속도)

  • Lee, Jae-Yeong;Sim, Mi-Ja;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.667-672
    • /
    • 1995
  • Cure kinetics of DGEBA(diglycidyl ether of bisphenol A)/MDA(4, 4'-methylene dianiline)/SN(succinonitrile) system and DGEBA/MDA/SN/HQ(hydroquinone) system was studied by Kissinger equation and Fractional life method through DSC in the temperature range of 85∼150$^{\circ}C$. As cure temperature was increased, reaction rate increased and reaction order was almost constant. The reaction rate of the system with HQ as a catalyst was more higher and activation energy of that was lower about 20% than those of the system without HQ. Starting temperature of cure reaction for DGEBA/MDA/SN/HQ system decreased about 30$^{\circ}C$ than that of DGEBA/MDA/SN system.

  • PDF

Diffusion-controlled Cure Kinetics of High Performance Epoxy/Carbon Fiber Composite Systems (확산속도에 따라 한계경화도를 갖는 에폭시/탄소섬유 복합재료의 경화반응 속도 연구)

  • 박인경;금성우;이두성;김영준;남재도
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.105-112
    • /
    • 2000
  • Using a commercial epoxy/carbon fiber composite prepreg (DMS 2224) as a model system, the cure kinetics of vitrifying thermoset system were analyzed by isothermal and dynamic-heating experiments. Focusing on the processing condition of high performance composite systems, a phenomenological kinetic model was developed by using differential scanning calorimetry (DSC) and reaction kinetics theories. The model system exhibited a limited degree of cure as a function of isothermal temperature seemingly due to the diffusion-controlled reaction rates. The diffusion-controlled cure reaction was incorporated in the development of the kinetic model, and the model parameters were determined from isothermal experiments. The first order reaction was confirmed from the characteristic shape of isothermal cure thermograms, and the activation energy wes 78.43 kJ/mol. Finally, the proposed model was used to predict a complex autoclave thermal condition, which was composed of several isothermal and dynamic-heating stages.

  • PDF

Effect of Thermal Imidization and Curing on Fluorescence Behavior of a Phenylethynyl-Terminated Poly(amic acid)

  • Cho, Donghwan;Yang, Gyeongmo;Drzal, Lawrence T.
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.297-302
    • /
    • 2003
  • The imidization and cure reaction of a thermosetting phenylethynyl-terminated amic acid (LaRC PETI-5) in film form have been monitored as a function of temperature by means of a steady-state fluorescence technique using a front-face illumination method. The variation of the fluorescence emission spectra of LaRC PETI-5 can be divided into four temperature regions; Region I: below 15$0^{\circ}C$, Region II: 150-25$0^{\circ}C$, Region III: 250-35$0^{\circ}C$, and Region IV: above 35$0^{\circ}C$. The fluorescence spectra in Region I are largely influenced by residual N-methyl-2pyrrolidinone in the polymer and also slightly by partial imidization of the polymer. There is a combined effect of imidization and solvent removal on the fluorescence behavior in Region II. The spectra in Regions III and IV are due significantly to the cure reaction of LaRC PETI-5 and to a post-cure effect of the polyimide, respectively. This spectroscopic evidence indicating the transformation of the amic acid imide oligomer into the corresponding polyimide via imidization and cure, agrees well with thermal analysis results obtained previously. The intermediate stage of cure in the range of 250-30$0^{\circ}C$ predominantly influences the change of the fluorescence intensity. The later stage above 30$0^{\circ}C$ significantly influences the position of the spectrum. This fluorescence study also supports the mechanism proposed in earlier work that the crosslinking reaction takes place at the reaction sites in the conjugated polyene and the phenylethynyl end group in the polyimide chain.

Effects of Carbon Black Content and Vulcanization Type on Cure Characteristics and Dynamic Mechanical Property of Styrene-Butadiene Rubber Compound

  • Changwoon Nah;Kim, Wan-Doo;Lee, Seag
    • Macromolecular Research
    • /
    • v.9 no.3
    • /
    • pp.157-163
    • /
    • 2001
  • The influences of carbon black loading and cure type on the cure characteristics including kinetics and dynamic mechanical properties were investigated for a styrene-butadiene rubber (SBR). The rate constants of accelerated sulfur vulcanization reaction at three different temperatures were determined using a cure rheometer, and they were compared with those from the direct measurement of sulfur concentration. The strain softening behavior under dynamic deformation, known as the Payne effect was also discussed depending on the carbon black loading and cure type.

  • PDF

THERMAL ANALYSIS OF THE DUAL CURED RESIN CEMENTS ACCORDING TO CURING CONDITION (중합조건에 따른 dual cured resin cement의 열분석적 연구)

  • Lee, In-Bog;Chung, Kwan-Hee;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.265-285
    • /
    • 1999
  • The purposes of this investigation were to observe the reaction kinetics of five commercial dual cured resin cements (Bistite, Dual, Scotchbond, Duolink and Duo) when cured under varying thicknesses of porcelain inlays by chemical or light activation and to evaluate the effect of the porcelain disc on the rate of polymerization of dual cured resin cement during light exposure by using thermal analysis. Thermogravimetric analysis(TGA) was used to evaluate the weight change as a function of temperature during a thermal program from $25{\sim}800^{\circ}C$ at rate of $10^{\circ}C$/min and to measure inorganic filler weight %. Differential scanning calorimetry(DSC) was used to evaluate the heat of cure(${\Delta}H$), maximum rate of heat output and peak heat flow time in dual cured resin cement systems when the polymerization reaction occured by chemical cure only or by light exposure through 0mm, 1mm, 2mm and 4mm thickness of porcelain discs. In 4mm thickness of porcelain disc, the exposure time was varied from 40s to 60s to investigate the effect of the exposure time on polymerization reaction. To investigate the effect on the setting of dual cured resin cements of absorption of polymerizing light by porcelain materials used as inlays and onlays, the change of the intensity of the light attenuated by 1mm, 2mm and 4mm thickness of porcelain discs was measured using curing radiometer. The results were as follows 1. The heat of cure of resin cements was 34~60J/gm and significant differences were observed between brands (P<0.001). Inverse relationship was present between the heat of reaction and filler weight % the heat of cure decreased with increasing filler content (R=-0.967). The heat of reaction by light cure was greater than by chemical cure in Bistite, Scotchbond and Duolink(P<0.05), but there was no statistically significant difference in Dual and Duo(P>0.05). 2. The polymerization rate of chemical cure and light cure of five commercially available dual cured resin cements was found to vary greatly with brand. Setting time based on peak heat flow time was shortest in Duo during chemical cure, and shortest in Dual during light cure. Cure speed by light exposure was 5~20 times faster than by chemical cure in dual cured resin cements. The dual cured resin cements differed markedly in the ratio of light and chemical activated catalysts. 3. The peak heat flow time increased by 1.51, 1.87, and 3.24 times as light cure was done through 1mm, 2mm and 4mm thick porcelain discs. Exposure times recommended by the manufacturers were insufficient to compensate for the attenuation of light by the 4mm thick porcelain disc. 4. A strong inverse relationship was observed between peak heat flow and peak time in chemical cure(R=0.951), and a strong positive correlations hip was observed between peak heat flow and the heat of cure in light cure(R=0.928). There was no correlationship present between filler weight % or heat of cure and peak time. 5. The thermal decomposition of resin cements occured primarily between $300^{\circ}C$ and $480^{\circ}C$ with maximum decomposition rates at $335^{\circ}C$ and $440^{\circ}C$.

  • PDF

Studies on the Crosslinking Density and Reinforcement of Rubber Compounds by Cure System (가황조건별 배합고무의 가교밀도와 고무보강성에 관한 연구)

  • Park, Nam-Cook;Lee, Seog
    • Elastomers and Composites
    • /
    • v.33 no.5
    • /
    • pp.315-323
    • /
    • 1998
  • The purpose of this study was to investigate the crosslinking density and reinforcement of rubber compounds with various carbon black loadings, cure systems and cure temperatures. Bound rubber content increased with volume fraction of carbon black in rubber compounds, but total crosslinking density decreased with increasing the bound rubber content. Rate constant of cure reaction was changed significantly by cure system and cure temperature, especially it showed strong dependence on the cure temperature. High activation energys of cure reaction were shown in the rubber compound with high loading of carbon black under EC system and in the rubber compound with low loading of carbon black under CC system. High total crosslinking density of vulcanized compounds appeared in the rubber compound with low loading of carbon black and CC system among cure systems. Typical change of total crosslinking density by EC system was not shown. The highest elastic constant by Mooney-Rivlin equation was shown in the rubber compound with low loading of carbon black and SEC system. Modulus increased as increasing the loading of carbon black in the rubber compounds and showed the order of SEC, CC, and EC system for cure system.

  • PDF

Cure Mechanism of DGEBA/MDA/SN System

  • Shim, Mi-Ja;Kim, Seong-Uk
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.272-275
    • /
    • 1993
  • To modify the toughness of epoxy for matrix, succinonitrile(SN) was introduced to diglycidy1 ether of bisphenol-A (DGEBA)/methylene dianiline(MDA)system. Cure reaction mdchanism of the DGEBA/MDA/SN system was strdied through Fourier transform infrared(FT-IR) spectrometry. As a result, the reaction of nitrile group of SN with secondary amine and with hydroxy1 group prevented the reaction of hydroxy1 group with epoxide group from crossoinding. Nitrile groups produced amide group by reacting with hydroxy1 groups and made a lowered crosslind density in chain networks.

  • PDF