• Title/Summary/Keyword: Cure Depth

Search Result 74, Processing Time 0.026 seconds

Cure depth control using photopolymerization inhibitor in microstereolithography and fabrication of three dimensional microstructures (액속주사법을 이용한 마이크로 광조형시 광폴리머에 대한 중합억제제의 영향분석 및 삼차원 미세구조물 제조)

  • 김성훈;주재영;정성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.714-719
    • /
    • 2004
  • Controlling the cure depth of the Fa1260T photopolymer enhances the quality of a microstructure and minimizes its size in microstereolithography. In this work, variation of cure depth of the Fa1260T photopolymer is investigated while the concentration of a photopolymerization inhibitor as a radical quencher was varied. The energy source inducing photopolymerization was a He-Cd laser and a motorized stage controled the laser beam path accurately. The effects of process variables such as laser beam power and scan speed on the cure depth were examined. Optimum conditions for the minimum cure depth were determined as laser power of 230 W and scan speed of 40-50 m/s at the concentration of the radical quencher of 5%. The minimum cure depth at the optimal condition was 14 m. The feasibility of the fabrication of microstructures such as a microcup, microfunnel, and microgrid of 100 m size is demonstrated using Super IH process.

  • PDF

Cure Properties in Photopolymer for Stereolithography according to Variance of Laser Beam Size (레이저빔 크기변화에 따른 광조형수지의 경화특성)

  • 이은덕;심재형;백인환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.76-84
    • /
    • 2003
  • Stereolithography is the technique using a laser beam to cure a liquid resin, a photopolymer, with three dimensional computer-aided design (CAD) data. The build parameters of stereolithography such as beam size, scan velocity. hatch spacing, layer thickness and etc. are determined by the accuracy of prototype, the build time and the cured properties of the resin. In particular, beam size is important processing parameter fur the other parameters. Therefore, this study observed the cured property to beam size. For this purpose, according to hatch spacing and beam size, the cure width and depth were measured on single cured line. Also, the cure width and depth were measured at single cured layer As a result of experiments. cure depth which varied from 0.23mm to 0.34mm was directly proportioned to beam radius. on the other hand, cure width which varied from 0.42mm to 1.07mm was inversely proportioned to beam radius. Surface roughness varied from 1.12 to 2.23 m for the ratio of hatch spacing to beam radius.

Effect of the Laser Beam Size on the Cure Properties of a Photopolymer in Stereolithography

  • Sim, Jae-Hyung;Lee, Eun-Dok;Kweon, Hyeog-Jun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.50-55
    • /
    • 2007
  • Stereolithography (SLA) is a technique using a laser beam to cure a photopolymer liquid resin with three-dimensional computer-aided design (CAD) data, The accuracy of the prototype, the build time, and the cured properties of the resins are controlled by the SLA process parameters such as the size of the laser beam, scan velocity, hatch spacing, and layer thickness, In particular, the size of the laser beam is the most important parameter in SLA, This study investigated the curing properties of photopolymers as a function of the laser beam size, The cure width and depth were measured either on a single cure line or at a single cure layer for various hatch spacings and laser beam sizes, The cure depth ranged from 0.23 to 0.34 mm and was directly proportional to the beam radius, whereas the cure width ranged from 0.42 to 1.07 mm and was inversely proportional to the beam radius, The resulting surface roughness ranged from 1.12 to $2.23{\mu}m$ for a ratio of hatch spacing to beam radius in the range 0.5-2.0 at a beam radius of 0.17 mm and a scan velocity of 125 mm/sec.

Study of Cure Properties in Photopolymer for Stereolithography using Various Laser Bean Size (레이저빔 직경변화에 대한 광경화성 수지의 경화특성 고찰)

  • 이은덕;김준안;백인환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1089-1092
    • /
    • 2001
  • In the stereolithography process, build parameters are laser power, scan velocity, scan width, bean diameter, layer thickness and so on. These values are determined according to product accuracy and build time. Build time can be reduced by improving of scan velocity, laser power, layer thickness, hatching space and so on. But variation of these parameters influence part accuracy, surface roughness, strength. This paper observed cure properties in various beam diameter. In order to examine these, relationships of scan velocity and cure depth, scan velocity and cure width according to various beam diameter in one scan line are measured. And cure thickness is measured according to beam diameter and scan velocity in scan surface of one layer. For reduction of build time, beam diameter and scan velocity is proposed in stereolithography process.

  • PDF

AN EXPERIMENTAL STUDY OF THE DEGREE OF CONVERSION AND CYTOTOXICITY OF DUAL CURE RESIN CEMENTS (수종 이원중합 레진 씨멘트의 중합률 및 세포 독성에 관한 실험적 연구)

  • Roh, Byoung-Duck;Park, Seong-Ho;Lee, Chung-Suck
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.33-54
    • /
    • 1995
  • The degree of conversion of composite resin was known to have influence on the mechanical properties of composite materials such as hardness, strength, wear resisitance, dimensional and color stability. Also unreacted monomer was reported to be harmful to the pulp. So the degree of conversion was a very important factor in the success of composite resin restorations. In recent, the dual cure resin cement was developed with the advocations that it could increase the curing rates in the sites where the curing ligt could not reach. Moreover many manufactors added some adhesive components in the resin cement. This study was undertaken to observe the effects of curing depth and light curing times on the degree of conversion of dual cure resin cements. CR INLAY CEMENT, DUAL CEMENT and OPTEC BOND, by the Fourier transform Infrared analysis, changing the curing depth 1mm, 2mm and 3mm, and varying the light curing time 20 seconds, 40 seconds and 80 seconds at each depth. The cytotoxicity of dual cure resin cements was tested by the in vitro MTT method using L929 cell. The results was evaluated and compared statistically. The results were obtained as follows : 1. The dual cure resin cements reavealed various degree of conversion, CR INLAY CEMENT and DUAL CEMENT had a tendency to be more reactive to the light cure and OPTEC BOND was a more chemical one. 2. CR INLAY CEMENT and DUAL CEMENT showed the lowest degree of conversion in 2 mm depth, and in 3mm depth the degree of conversion increased, which were due to the chemical cure of dual cures, but OPTEC BOND showed decreasing degree of conversion with increasing curing dept h and all experimental groups showed lower degree of conversion than CHEMICAL group which cured in dark room with no light, so the weak light-curing of dual cure resin cement prevented the chemical cure. (P<0.05) 3. CR INLAY CEMENT and DUAL CEMENT showed increasing degree of conversion in 1 mm and 3 mm, according to the increasing cure times, but in 2 mm depth the degree of conversion decreased with increasing light-curing times and OPTEC BOND showed contrary tendency, but there was no ststistical importance in the differences among the experimental group.(P>0.05) 4. The optical density by MTT assay of extractions of CR INLAY CEMENT, DUAL CEMENT and OPTEC BOND revealed no statitically important differences comparing with optical density of negative control.(P>0.05) 5. CR INLAY CEMENT showed a tendency of increaing cytotoxicity with days and DUAL CEMENT and OPTEC BOND showed higher cytotoxicity in 2 days than in 4 days, but there was no statistical importance in the differences.(P>0.05).

  • PDF

EFFECT OF LIGHT SOURCE AND SHADE ON DEPTH OF CURE OF COMPOSITES (중합광원과 레진 색상이 복합레진의 중합깊이에 미치는 영향)

  • Na, Joon-Sok;Jeong, Sun-Wa;Hwang, Yun-Chan;Kim, Sun-Ho;Yun, Chang;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.6
    • /
    • pp.561-568
    • /
    • 2002
  • Purpose of this research is estimating polymerization depth of different source of light. XL 3000 for halo-gen light, Apollo 95E for plasma arc light and Easy cure for LED light source were used in this study. Different shade (B1 & A3) resin composites (Esthet-X, Dentsply, U.S.A.) were used to measure depth of cure. 1, 2, and 3 mm thick samples were light cured for three seconds, six seconds or 10 seconds with Apollo 95E and they were light cured with XL-3000 and Easy cure for 10 seconds, 20 seconds, or 40 seconds. Vicker's hardness test carried out after store samples for 24 hours in distilled water. Results were as following. 1. Curing time increases from al1 source of lights, oui$.$ing depth increased(p<0.05). 2. Depth (that except 1mm group and 2mm group which lighten to halogen source of light) deepens in all groups, Vickers hardness decreased(p<0.05). 3. Vicker's hardness of A3 shade composite was lower in all depths more than B1 shade composites in group that do polymerization for 10 seconds and 20 seconds using halogen source of light(p<0.05), but group that do polymerization lot 40 seconds did not show difference(p>0.05). 4. Groups that do polymerization using Plasma arc and LED source of light did not show Vicker's hardness difference according to color at surface and 1mm depth(p>0.05), but showed difference according to color at 2mm and 3mm depth(p<0.05). The results showed that Apollo 95E need more polymerization times than manufacturer's recommendation (3 seconds), and Easy cure need polymerization time of XL-3000 at least.

A STUDY ON THE CHANGES IN DEGREE OF CONVERSION OF DUAL-CURE RESTORATIVE MATERIALS WITH TIME-ELAPSE (이중중합 수복재의 시간경과에 따른 중합도 변화)

  • Yang, Chul-Ho;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.3
    • /
    • pp.554-563
    • /
    • 1999
  • For the purpose of elucidating the polymerization modes of dual-cure restorative materials and comparing them with single-cure restorative materials, a study was performed on the light-cured composite resin, dual-cure composite resin, dual-cure glass ionomer cement and chemical-cure glass ionomer cement. By measuring the microhardness of each material at 0mm, 1mm and 3mm depth during initial 24 hours with predetermined interval, the state of polymerization and degree of conversion was indirectly evaluated for each material, and obtained results are as follows : 1. All of four materials tested showed significant increase in microhardness after 24hrs compared with just after curing starts. 2. In all materials except Ketac-fil, there showed a significant difference in microhardness between each depth at each time interval. 3. In the test of lap time till final curing for each material, the polymerization process was revealed to last longer in the dual-cure type materials than in single-cure type materials at 3mm depth. Based on the results above, it was demonstrated with materials of dual-cure mode that the degree of conversion increases by successive curing reactions even in the deeper layers where sufficient curing light is impermeable.

  • PDF

EFFECT OF HEMA AND TEGDMA ON THE PROPERTIES OF EXPERIMENTAL COMPOSITE RESINS (Hydroxyethyl methacrylate (HEMA)와 Triethylene glycol dimethacrylate (TEGDMA)가 실험적 복합레진의 특성에 미치는 영향)

  • Han Man-Hyun;Choi Boo-Byung;Woo Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.476-492
    • /
    • 2003
  • Purpose : The purpose of this study was to compare HEMA and TEGDMA as diluents for the composite resin. Material and methods : Eight kinds of experimental light curable composite resins were prepared and used. Concentrations of monomer and filler were same for all experimental composites, except, the diluent's ratios to the monomer. The ratio of diluents to Bis-GMA were 15%, 20%, 25%, and 30%, and two kinds of diluents were used, so total experimental groups were eight including one control group of 25% TEGDMA. Results : Depth of cure, flexural strength, shear bond strength to bovine enamel, shear bond strength to bovine dentin, water absorption and solubility of composites in water were measured. Sample size for each groups were 10. Arithmetic means were used as each groups representative values, and regression test for two diluents and low concentrations, Duncan's multiple range test, and Two-way ANOVA test were done for kinds of diluents and its concentrations at level of 0.05. Conclusion : Following results were obtained ; 1. There were not significant differences in effects of HEMA and TEGDMA to depth of cure, flexural strength of composites and shear bond strength to bovine enamel (p>0.05). 2. Increase of the concentrations of the diluents made the depth of cure (p<0.001) and flexural strength (p<0.05) a little higher. 3. Shear bond strength to dentin was higher on HEMA containing composites than TEGDMA containing composites (p<0.001). 4. Water absorption was higher on HEMA containing composites than TEGDMA containing composites (p<0.01).

INFLUENCES OF CAMPHOROQUINONE ON THE PROPERTIES OF COMPOSITES (Camphoroquinone이 복합레진의 특성에 미치는 영향)

  • 탁흥수;박상진
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.1
    • /
    • pp.41-50
    • /
    • 2001
  • The purpose of this study was to examine the influences of camphoroquinone on the properties of five experimental composites. The contents of camphoroquinone were varied as 0.2%, 0.3%, 0.4%, 0.5%, and 0.6%, with silanized filler 75% and tertiary amine 0.2%. Five kinds of experimental composites were prepared, and diametral tensile strength, shear bond strength, depth of cure and yellowish discoloration were tested as a measurement. Specimen numbers of 10 were applied to all test items and experimental groups. Specimens for testing the diametral tensile strengths with internal diameter of 6mm in diameter and 3mm in height were filled with 5 experimental composites which were crushed with 1mm/min cross-head speed on Instron universal testing machine (Model No. 4467). Shear bond strength was measured on specimens attached to bovine teeth enamel etched with 37% phosphoric acid. Depth of cure was measured by the measurement of height of specimens which were removed the un-polymerized portion with acetone. Yellowness measurements were made by chromometer(Minolta Co. Japan) using L$^*$a$^*$b$^*$ values. ANOVA and Multiple range tests were used analyzed data with confidence level at 95%. The mean value of the shear bond strengths ranged from 31.03MPa to 39.49MPa. Following results were obtained ; 1. Diametral tensile strength was highest in experimental group 3, then was not affected by the contents of camphoroquinone ($r^2$=0.0422). 2. Composite resins containing 0.4% camphoroquinone showed the highest shear bond strength, but there was no statistical significance (p=0.3718). 3. Camphoroquinone reduces the depth of cure in the composite resins (p=0.0004, $r^2$=0.9483). 4. Camphoroquinone made the composites yellowish ($r^2$=0.9815). These results mean that increased content of camphoroquinone reduces the depth of cure, and that camphoroquinone make composites yellowish.

  • PDF

A STUDY ON THE DEGREE OF CONVERSION OF LIGHT CURING COMPOSITE RESIN ACCORDING TO THE DEPTH OF CURE AND LIGHT CURING TIME (수종 광중합 복합 레진의 중합 깊이와 광조사 시간에 따른 중합률에 관한 연구)

  • Kim, Kyung-Hyun;Kwon, Oh-Sung;Kim, Hyun-Gee;Baek, Kyu-Chul;Um, Chung-Moon;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.35-60
    • /
    • 1997
  • Physical properties of composite resins such as strength, resistance to wear, discoloration, etc, depend on the degree of conversion of the resin components. The clinical behavior of restorative resins varies brand to brand. Part of this variation is associated with the filler and differences in the polymer matrix. The polymer matrix of resins may differ because the involved monomers are dissimilar and because of variation in the catalyst system. The purpose of this study was to evaluate the degree of conversion of the composite resins according to the depth of cure and light curing time. 7mm diameter cylindrical aluminum molds were filled with each of five different hybrid light curing composite resins(Z-100, Charisma, Herculite XRV, Prisma TPH, Veridonfil) on the thin resin films. The molds were 1mm, 2mm, 3mm, 4mm, and 5mm in depth to produce resin films of various heights. Each sample was given 20sec, 40sec, and 60sec illumination with a light source. The degree of conversion of carbon double bonds to single bonds in the resin films was examined by means of Fourier Transform Infrared Spectrometer. The results were obtained as follows; 1. There was difference in the degree of conversion among five light curing composite resins according to the depth of cure for 20sec, 40sec, and 60sec illumination with light source with statistical significance(P<0.05). 2. Five light curing composite resins show lower degree of conversion at surface of the resin than depth of 1mm. 3. The degree of conversion of five light curing composite resins was siginificantly reduced from the maximum for the resin film when the light passed through as little as 1mm of each composite. 4. The degree of conversion of five light curing composite resins decrease significantly at the depth of 4mm, and polymerization was not occured at the depth of 5mm except for Prisma TPH. 5. The degree of conversion of five light curing composite resins was increased with increased light curing time, and there was no significant differences in the degree of conversion above 4mm in Z-100, 3mm in Charisma, and at depth of 5mm in Herculite XRV and Veridonfil(P>0.05).

  • PDF