• Title/Summary/Keyword: Cumulative gas production

Search Result 50, Processing Time 0.022 seconds

Cumulative Angular Distortion Curve of Multi-Pass Welding at Thick Plate of Offshore Structures

  • Ha, Yunsok;Choi, Jiwon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.106-114
    • /
    • 2015
  • In the fabrication of offshore oil and gas facilities, the significance of dimension control is growing continuously. But, it is difficult to determine the deformation of the structure during fabrication by simple lab tests due to the large size and the complicated shape. Strain-boundary method (a kind of shrinkage method) based on the shell element was proposed to predict the welding distortion of a structure effectively. Modeling of weld geometry in shell element is still a difficult task. In this paper, a concept of imaginary temperature pair is introduced to handle the effect of geometric factors such as groove shape, plate thickness and pass number, etc. Single pass imaginary temperature pair formula is derived from the relation between the groove area and the FE mesh size. By considering the contribution of each weld layer to the whole weldment, multi-pass imaginary temperature is also derived. Since the temperature difference represents the distortion increment, cumulative distortion curve can be drawn by integrating the temperature difference. This curve will be a useful solution when engineers meet some problems occurred in the shipyard. A typical example is shown about utilization of this curve. Several verifications are conducted to examine the validity of the proposed methodology. The applicability of the model is also demonstrated by applying it to the fabrication process of the heavy ship block. It is expected that the imaginary temperature model can effectively solve the modeling problem in shell element. It is also expected that the cumulative distortion curve derived from the imaginary temperature can offer useful qualitative information about angular distortion without FE analysis.

Comparison of in vitro digestibility and chemical composition among four crop straws treated by Pleurotus ostreatus

  • Nie, Haitao;Wang, Ziyu;You, Jihao;Zhu, Gang;Wang, Hengchang;Wang, Feng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.24-34
    • /
    • 2020
  • Objective: The effects of Pleurotus ostreatus on the feed utilization of broad bean stalks (BBS), rape straw (RS), paddy straw (PS), and corn stalk (CS) was examined. Methods: The four roughages were co-cultured with Pleurotus ostreatus. The chemical composition; enzyme activities of laccase, carboxymethylcellulase (CMCase) and xylanase; carbohydrate and protein fractions (based on The Cornell Net Carbohydrate and Protein System [CNCPS]) were assessed at different days after inoculation (7, 14, 21, 28 d) and un-inoculated roughages (control, 0 d). The digestibility of nutrient components and the gas production of roughage with various incubation times were monitored at 0, 2, 4, 6, 9, 12, 24, 36, 48, 60, and 72 h using an in vitro ruminal fermentation method. Results: A higher CMCase activity (0.1039 U/mL) and earlier time to peak (14 d) were detected in Pleurotus ostreatus cultured with CS (p<0.05). Significantly, the incubation length-dependent responses of cumulative gas production were observed from 24 to 72 hours post fermentation (p<0.05), and these incubation length-dependent effects on cumulative gas production of PS and CS appeared earlier (24 h) for PS and CS than those (48 h) for BBS and RS (p<0.05). The fast-degradable carbohydrate (CA) content for all four roughages significantly increased over time (p<0.05). Nonetheless, increased degradation efficiency for CA treated with Pleurotus ostreatus was detected at both 21 and 28 days of incubation (p<0.05). With the exception of PS (p<0.05), there were no significant difference among the roughages (p>0.05) in slowly-degradable carbohydrate (CB2) at different incubation times (p<0.05). Conclusion: Assessment of the alterations in chemical composition, CNCPS system fractions, and the fermentation kinetics after biological pretreatment may yield a valuable database for evaluating the biological pretreatment of Pleurotus ostreatus in ruminant feed.

Effects of lactic acid bacteria and molasses on fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro ruminal fermentation of rice straw silage

  • Zhao, Jie;Dong, Zhihao;Li, Junfeng;Chen, Lei;Bai, Yunfeng;Jia, Yushan;Shao, Tao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.783-791
    • /
    • 2019
  • Objective: This study was to evaluate the fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro gas production of rice straw ensiled with lactic acid bacteria and molasses. Methods: Fresh rice straw was ensiled in 1-L laboratory silos with no additive control (C), Lactobacillus plantarum (L), molasses (M) and molasses+Lactobacillus plantarum (ML) for 6, 15, 30, and 60 days. After storage, the silages were subjected to microbial and chemical analyses as well as the further in vitro fermentation trial. Results: All additives increased lactic acid concentration, and reduced pH, dry matter (DM) loss and structural carbohydrate content relative to the control (p<0.05). The highest organic acid and residual sugar contents and lignocellulose reduction were observed in ML silage. L silage had the highest V-score with 88.10 followed by ML silage. L and ML silage improved in vitro DM digestibility as compared with other treatments, while in vitro neutral detergent fibre degradability (IVNDFD) was increased in M and ML silage (p<0.05). M silage significantly (p<0.05) increased propionic acid (PA) content and decreased butyric acid content and acetic acid/PA as well as 72-h cumulative gas production. Conclusion: The application of ML was effective for improving both the fermentation quality and in vitro digestibility of rice straw silage. Inclusion with molasses to rice straw could reduce in vitro ruminal gas production.

Evaluation of Biogas Production Performance and Dynamics of the Microbial Community in Different Straws

  • Li, Xue;Liu, Yan-Hua;Zhang, Xin;Ge, Chang-Ming;Piao, Ren-Zhe;Wang, Wei-Dong;Cui, Zong-Jun;Zhao, Hong-Yan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.524-534
    • /
    • 2017
  • The development and utilization of crop straw biogas resources can effectively alleviate the shortage of energy, environmental pollution, and other issues. This study performed a continuous batch test at $35^{\circ}C$ to assess the methane production potential and volatile organic acid contents using the modified Gompertz equation. Illumina MiSeq platform sequencing, which is a sequencing method based on sequencing-by-synthesis, was used to compare the archaeal community diversity, and denaturing gradient gel electrophoresis (DGGE) was used to analyze the bacterial community diversity in rice straw, dry maize straw, silage maize straw, and tobacco straw. The results showed that cumulative gas production values for silage maize straw, rice straw, dry maize straw, and tobacco straw were 4,870, 4,032.5, 3,907.5, and $3,628.3ml/g{\cdot}VS$, respectively, after 24 days. Maximum daily gas production values of silage maize straw and rice straw were 1,025 and $904.17ml/g{\cdot}VS$, respectively, followed by tobacco straw and dry maize straw. The methane content of all four kinds of straws was > 60%, particularly that of silage maize straw, which peaked at 67.3%. Biogas production from the four kinds of straw was in the order silage maize straw > rice straw > dry maize straw > tobacco straw, and the values were 1,166.7, 1,048.4, 890, and $637.4ml/g{\cdot}VS$, respectively. The microbial community analysis showed that metabolism was mainly carried out by acetate-utilizing methanogens, and that Methanosarcina was the dominant archaeal genus in the four kinds of straw, and the DGGE bands belonged to the phyla Firmicutes, Bacteroidetes, and Chloroflexi. Silage maize is useful for biogas production because it contains four kinds of straw.

Validation and Recommendation of Methods to Measure Biogas Production Potential of Animal Manure

  • Pham, C.H.;Triolo, J.M.;Cu, T.T.T.;Pedersen, L.;Sommer, S.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.864-873
    • /
    • 2013
  • In developing countries, biogas energy production is seen as a technology that can provide clean energy in poor regions and reduce pollution caused by animal manure. Laboratories in these countries have little access to advanced gas measuring equipment, which may limit research aimed at improving local adapted biogas production. They may also be unable to produce valid estimates of an international standard that can be used for articles published in international peer-reviewed science journals. This study tested and validated methods for measuring total biogas and methane ($CH_4$) production using batch fermentation and for characterizing the biomass. The biochemical methane potential (BMP) ($CH_4$ NL $kg^{-1}$ VS) of pig manure, cow manure and cellulose determined with the Moller and VDI methods was not significantly different in this test (p>0.05). The biodegradability using a ratio of BMP and theoretical BMP (TBMP) was slightly higher using the Hansen method, but differences were not significant. Degradation rate assessed by methane formation rate showed wide variation within the batch method tested. The first-order kinetics constant k for the cumulative methane production curve was highest when two animal manures were fermented using the VDI 4630 method, indicating that this method was able to reach steady conditions in a shorter time, reducing fermentation duration. In precision tests, the repeatability of the relative standard deviation (RSDr) for all batch methods was very low (4.8 to 8.1%), while the reproducibility of the relative standard deviation (RSDR) varied widely, from 7.3 to 19.8%. In determination of biomethane concentration, the values obtained using the liquid replacement method (LRM) were comparable to those obtained using gas chromatography (GC). This indicates that the LRM method could be used to determine biomethane concentration in biogas in laboratories with limited access to GC.

Effect of Rhodophyta extracts on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations

  • Lee, Shin Ja;Shin, Nyeon Hak;Jeong, Jin Suk;Kim, Eun Tae;Lee, Su Kyoung;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.54-62
    • /
    • 2018
  • Objective: Due to the threat of global warming, the livestock industry is increasingly interested in exploring how feed additives may reduce anthropogenic greenhouse gas emissions, especially from ruminants. This study investigated the effect of Rhodophyta supplemented bovine diets on in vitro rumen fermentation and rumen microbial diversity. Methods: Cannulated Holstein cows were used as rumen fluid donors. Rumen fluid:buffer (1:2; 15 mL) solution was incubated for up to 72 h in six treatments: a control (timothy hay only), along with substrates containing 5% extracts from five Rhodophyta species (Grateloupia lanceolata [Okamura] Kawaguchi, Hypnea japonica Tanaka, Pterocladia capillacea [Gmelin] Bornet, Chondria crassicaulis Harvey, or Gelidium amansii [Lam.] Lamouroux). Results: Compared with control, Rhodophyta extracts increased cumulative gas production after 24 and 72 h (p = 0.0297 and p = 0.0047). The extracts reduced methane emission at 12 and 24 h (p<0.05). In particular, real-time polymerase chain reaction analysis indicated that at 24 h, ciliate-associated methanogens, Ruminococcus albus and Ruminococcus flavefaciens decreased at 24 h (p = 0.0002, p<0.0001, and p<0.0001), while Fibrobacter succinogenes (F. succinogenes) increased (p = 0.0004). Additionally, Rhodophyta extracts improved acetate concentration at 12 and 24 h (p = 0.0766 and p = 0.0132), as well as acetate/propionate (A/P) ratio at 6 and 12 h (p = 0.0106 and p = 0.0278). Conclusion: Rhodophyta extracts are a viable additive that can improve ruminant growth performance (higher total gas production, lower A/P ratio) and methane abatement (less ciliateassociated methanogens, Ruminococcus albus and Ruminococcus flavefaciens and more F. succinogenes.

Biogas Production by Anaerobic Co-digestion of Livestock Manure Slurry with Fruits Pomace (가축분뇨와 과실착즙박의 혼합 혐기소화에 따른 바이오가스 생산)

  • Byeon, Jieun;Ryoo, Jongwon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.5-13
    • /
    • 2019
  • This study is conducted to investigate the effects of anaerobic treatments of swine manure slurry alone and combination of livestock manure slurry and fruit pomace on biogas production. Anaerobic co-digestion was evaluated in mesophilic tank reactors for 96 day-incubation period. The organic matter loading of anaerobic digestion was 1 kg of volatile solids(VS) per $1m^3{\cdot}day$. The highest methane production was achieved from the combination of swine manure slury and mandarin pomace(70:30) treatment, whereas the lowest daily and cumulative methane yields was observed in swine manure slurry alone treatment. More than two-fold increase in bio-gas and methane production was obtained by combination of livestock manure slurry and mandarin pomace treatment, compared to the swine manure slurry alone treatment. The co-digestion of livestock manure and fruits pomace has advantages to enhance the production of methane gas, compared to digestion of swine manure slurry alone.

Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants

  • Islam, Mahfuzul;Lee, Sang-Suk
    • Journal of Animal Science and Technology
    • /
    • v.61 no.3
    • /
    • pp.122-137
    • /
    • 2019
  • Methane, one of the important greenhouse gas, has a higher global warming potential than that of carbon dioxide. Agriculture, especially livestock, is considered as the biggest sector in producing anthropogenic methane. Among livestock, ruminants are the highest emitters of enteric methane. Methanogenesis, a continuous process in the rumen, carried out by archaea either with a hydrogenotrophic pathway that converts hydrogen and carbon dioxide to methane or with methylotrophic pathway, which the substrate for methanogenesis is methyl groups. For accurate estimation of methane from ruminants, three methods have been successfully used in various experiments under different environmental conditions such as respiration chamber, sulfur hexafluoride tracer technique, and the automated head-chamber or GreenFeed system. Methane production and emission from ruminants are increasing day by day with an increase of ruminants which help to meet up the nutrient demands of the increasing human population throughout the world. Several mitigation strategies have been taken separately for methane abatement from ruminant productions such as animal intervention, diet selection, dietary feed additives, probiotics, defaunation, supplementation of fats, oils, organic acids, plant secondary metabolites, etc. However, sustainable mitigation strategies are not established yet. A cumulative approach of accurate enteric methane measurement and existing mitigation strategies with more focusing on the biological reduction of methane emission by direct-fed microbials could be the sustainable methane mitigation approaches.

Effect of Herbal Extracts Supplementation on Ruminal Methane Production and Fermentation Characteristics In vitro (한약재 추출물 첨가가 in vitro 반추위 발효 시 메탄생성 및 발효성상에 미치는 영향)

  • Lee, Shin-Ja;Lee, Sung-Sill;Moon, Yea-Hwang
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1315-1322
    • /
    • 2011
  • This study was conducted to investigate the effects of several herbal extracts (obtusifolia, cinnamon, chinese pepper, licorice root) on the characteristics of rumen fermentation in vitro. Soybean meal was used as a substrate for fermentation in vitro. Herbal extracts were supplemented to media by 10% of the substrate. The substrates supplemented to Dehority artificial media with herbal extracts were fermented in 30ml serum bottles for 0, 3, 6, 9, 12 and 24 hr at $39^{\circ}C$. Cumulative gas production was significantly (p<0.05) greater in the herbal extract supplements than in the control, in the order of licorice root, chinese pepper, cinnamon and obtusifolia. Methane proportions of the herbal extracts were significantly (p<0.05) higher than that of the control. Licorice root extract supplementation resulted in the lowest methane proportion at 3 hr fermentation. Proportion of hydrogen was significantly (p<0.05) higher in the herbal extract supplements than in the control at 12 hr fermentation. Compared to the control, ammonia concentration in the licorice root was significantly higher at 3 hr fermentation, but lower at 12 hr fermentation (p<0.05). Based on these results, supplementation of the herbal extracts used in this experiment resulted in increased cumulative gas production and stimulating methane production in vitro rumen fermentation.

Metabolisable Energy, In situ Rumen Degradation and In vitro Fermentation Characteristics of Linted Cottonseed Hulls, Delinted Cottonseed Hulls and Cottonseed Linter Residue

  • Bo, Y.K.;Yang, H.J.;Wang, W.X.;Liu, H.;Wang, G.Q.;Yu, X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.2
    • /
    • pp.240-247
    • /
    • 2012
  • Dietary supplementation with conventional linted cottonseed hulls (LCSH) is a common practice in livestock production all over the world. However, supplementation with mechanically delinted cottonseed hulls (DCSH) and cottonseed linter residue (CLR) is uncommon. Cottonseed by-products, including LCSH, DCSH and CLR, were assessed by chemical analysis, an in situ nylon bag technique, an in vitro cumulative gas production technique and in vitro enzyme procedure. The crude protein (CP) content of CLR (302 g/kg dry matter (DM)) was approximately 3 times that of LCSH and 5 times that of DCSH. The crude fat content was approximately 3 times higher in CLR (269 g/kg DM) than in LCSH and 4 times higher than in DCSH. Neutral detergent fibre (311 g/kg DM) and acid detergent fibre (243 g/kg DM) contents of CLR were less than half those of DCSH or LCSH. Metabolisable energy, estimated by in vitro gas production and chemical analyses, ranked as follows: CLR (12.69 kJ/kg DM)>LCSH (7.32 kJ/kg DM)>DCSH (5.82 kJ/kg DM). The in situ degradation trial showed that the highest values of effective degradability of DM and CP were obtained for CLR (p<0.05). The in vitro disappearance of ruminal DM ranked as follows: CLR>LCSH>DCSH (p<0.05). The lowest digestibility was observed for DCSH with a two-step in vitro digestion procedure (p<0.05). The potential gas production in the batch cultures did not differ for any of the three cottonseed by-product feeds. The highest concentration of total volatile fatty acids was observed in CLR after a 72 h incubation (p<0.05). The molar portions of methane were similar between all three treatments, with an average gas production of 22% (molar). The CLR contained a higher level of CP than did LCSH and DCSH, and CLR fermentation produced more propionate. The DCSH and LCSH had more NDF and ADF, which fermented into greater amounts of acetate.