• Title/Summary/Keyword: Cultured bone cell

Search Result 288, Processing Time 0.034 seconds

Common and differential effects of docosahexaenoic acid and eicosapentaenoic acid on helper T-cell responses and associated pathways

  • Lee, Jaeho;Choi, Yu Ri;Kim, Miso;Park, Jung Mi;Kang, Moonjong;Oh, Jaewon;Lee, Chan Joo;Park, Sungha;Kang, Seok-Min;Manabe, Ichiro;Ann, Soo-jin;Lee, Sang-Hak
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.278-283
    • /
    • 2021
  • Our understanding of the differential effects between specific omega-3 fatty acids is incomplete. Here, we aimed to evaluate the effects of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on T-helper type 1 (Th1) cell responses and identify the pathways associated with these responses. Naïve CD4+ T cells were co-cultured with bone marrow-derived dendritic cells (DCs) in the presence or absence of palmitate (PA), DHA, or EPA. DHA or EPA treatment lowered the number of differentiated IFN-γ-positive cells and inhibited the secretion of IFN-γ, whereas only DHA increased IL-2 and reduced TNF-α secretion. There was reduced expression of MHC II on DCs after DHA or EPA treatment. In the DC-independent model, DHA and EPA reduced Th1 cell differentiation and lowered the cell number. DHA and EPA markedly inhibited IFN-γ secretion, while only EPA reduced TNF-α secretion. Microarray analysis identified pathways involved in inflammation, immunity, metabolism, and cell proliferation. Moreover, DHA and EPA inhibited Th1 cells through the regulation of diverse pathways and genes, including Igf1 and Cpt1a. Our results showed that DHA and EPA had largely comparable inhibitory effects on Th1 cell differentiation. However, each of the fatty acids also had distinct effects on specific cytokine secretion, particularly according to the presence of DCs.

Induction of Angiogenesis by Matrigel Coating of VEGF-Loaded PEG/PCL-Based Hydrogel Scaffolds for hBMSC Transplantation

  • Jung, Yeon Joo;Kim, Kyung-Chul;Heo, Jun-Young;Jing, Kaipeng;Lee, Kyung Eun;Hwang, Jun Seok;Lim, Kyu;Jo, Deog-Yeon;Ahn, Jae Pyoung;Kim, Jin-Man;Huh, Kang Moo;Park, Jong-Il
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.663-668
    • /
    • 2015
  • hBMSCs are multipotent cells that are useful for tissue regeneration to treat degenerative diseases and others for their differentiation ability into chondrocytes, osteoblasts, adipocytes, hepatocytes and neuronal cells. In this study, biodegradable elastic hydrogels consisting of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(${\varepsilon}$-caprolactone) (PCL) scaffolds were evaluated for tissue engineering because of its biocompatibility and the ability to control the release of bioactive peptides. The primary cultured cells from human bone marrow are confirmed as hBMSC by immunohistochemical analysis. Mesenchymal stem cell markers (collagen type I, fibronectin, CD54, $integrin1{\beta}$, and Hu protein) were shown to be positive, while hematopoietic stem cell markers (CD14 and CD45) were shown to be negative. Three different hydrogel scaffolds with different block compositions (PEG:PCL=6:14 and 14:6 by weight) were fabricated using the salt leaching method. The hBMSCs were expanded, seeded on the scaffolds, and cultured up to 8 days under static conditions in Iscove's Modified Dulbecco's Media (IMDM). The growth of MSCs cultured on the hydrogel with PEG/PCL= 6/14 was faster than that of the others. In addition, the morphology of MSCs seemed to be normal and no cytotoxicity was found. The coating of the vascular endothelial growth factor (VEGF) containing scaffold with Matrigel slowed down the release of VEGF in vitro and promoted the angiogenesis when transplanted into BALB/c nude mice. These results suggest that hBMSCs can be supported by a biode gradable hydrogel scaffold for effective cell growth, and enhance the angiogenesis by Matrigel coating.

The Neovascularization Effect of Bone Marrow Stromal Cells in Temporal Muscle after Encephalomyosynangiosis in Chronic Cerebral Ischemic Rats

  • Kim, Hyung-Syup;Lee, Hyung-Jin;Yeu, In-Seung;Yi, Jin-Seok;Yang, Ji-Ho;Lee, Il-Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.44 no.4
    • /
    • pp.249-255
    • /
    • 2008
  • Objective : In Moyamoya disease, the primary goal of treatment is to improve collateral circulation through angiogenesis. In the present study, we obtained and sub-cultured bone marrow stromal cells (BMSCs) from rats without a cell-mediated immune response. Then, we injected the labeled BMSCs directly into adjacent temporal muscle during encephalomyosynangiosis (EMS). Three weeks after BMSC transplantation, we examined the survival of the cells and the extent of neovascularization. Methods : We divided 20 rats into a BMSC transplantation group (n=12) and a control group (n=8). Seven days after the induction of chronic cerebral ischemia, an EMS operation was performed, and labeled BMSCs ($1{\times}106^6/100\;{\mu}L$) were injected in the temporal muscle for the transplantation group, while an equivalent amount of culture solution was injected for the control group. Three weeks after the transplantation, temporal muscle and brain tissue were collected for histological examination and western blot analysis. Results : The capillary/muscle ratio in the temporal muscle was increased in the BMSC transplantation group compared to the control group, showing a greater increase of angiogenesis (p<0.05). In the brain tissue, angiogenesis was not significantly different between the two groups. The injected BMSCs in the temporal muscle were vascular endothelial growth factor (VEGF)-positive by immunofluorescence staining. In both temporal muscle and brain tissue, the expression of VEGF by western blot analysis was not much different between the two groups. Conclusion : During EMS in a chronic cerebral ischemia rat model, the injection of BMSCs resulted in accelerated angiogenesis in the temporal muscle compared to the control group.

Analysis of Global Gene Expression Profile of Human Adipose Tissue Derived Mesenchymal Stem Cell Cultured with Cancer Cells (암세포주와 공동 배양된 인간 지방 조직 유래 중간엽 줄기 세포의 유전자 발현 분석)

  • Kim, Jong-Myung;Yu, Ji-Min;Bae, Yong-Chan;Jung, Jin-Sup
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.631-646
    • /
    • 2011
  • Mesenchymal stem cells (MSC) are multipotent and can be isolated from diverse human tissues including bone marrow, fat, placenta, dental pulp, synovium, tonsil, and the thymus. They function as regulators of tissue homeostasis. Because of their various advantages such as plasticity, easy isolation and manipulation, chemotaxis to cancer, and immune regulatory function, MSCs have been considered to be a potent cell source for regenerative medicine, cancer treatment and other cell based therapy such as GVHD. However, relating to its supportive feature for surrounding cell and tissue, it has been frequently reported that MSCs accelerate tumor growth by modulating cancer microenvironment through promoting angiogenesis, secreting growth factors, and suppressing anti-tumorigenic immune reaction. Thus, clinical application of MSCs has been limited. To understand the underlying mechanism which modulates MSCs to function as tumor supportive cells, we co-cultured human adipose tissue derived mesenchymal stem cells (ASC) with cancer cell lines H460 and U87MG. Then, expression data of ASCs co-cultured with cancer cells and cultured alone were obtained via microarray. Comparative expression analysis was carried out using DAVID (Database for Annotation, Visualization and Integrated Discovery) and PANTHER (Protein ANalysis THrough Evolutionary Relationships) in divers aspects including biological process, molecular function, cellular component, protein class, disease, tissue expression, and signal pathway. We found that cancer cells alter the expression profile of MSCs to cancer associated fibroblast like cells by modulating its energy metabolism, stemness, cell structure components, and paracrine effect in a variety of levels. These findings will improve the clinical efficacy and safety of MSCs based cell therapy.

Identification of Genes Modulated by High Extracellular Calcium in Coculture of Mouse Osteoblasts and Bone Marrow Cells by Oligo Chip Assay

  • Kim, Hyung-Keun;Song, Mi-Na;Jun, Ji-Hae;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.31 no.2
    • /
    • pp.53-65
    • /
    • 2006
  • Calcium concentration in the bone resorption lacunae is high and is in the mM concentration range. Both osteoblast and osteoclast have calcium sensing receptor in the cell surface, suggesting the regulatory role of high extracellular calcium in bone metabolism. In vitro, high extracellular calcium stimulated osteoclastogenesis in coculture of mouse osteoblasts and bone marrow cells. Therefore we examined the genes that were commonly regulated by both high extracellular calcium and $1,25(OH)_2vitaminD_3(VD3)$ by using mouse oligo 11 K gene chip. In the presence of 10 mM $[Ca^{2+}]e$ or 10 nM VD3, mouse calvarial osteoblasts and bone marrow cells were co-cultured for 4 days when tartrate resistant acid phosphatase-positive multinucleated cells start to appear. Of 11,000 genes examined, the genes commonly regulated both by high extracellular calcium and by VD3 were as follows; 1) the expression of genes which were osteoclast differentiation markers or were associated with osteoclastogenesis were up-regulated both by high extracellular calcium and by VD3; trap, mmp9, car2, ctsk, ckb, atp6b2, tm7sf4, rab7, 2) several chemokine and chemokine receptor genes such as sdf1, scya2, scyb5, scya6, scya8, scya9, and ccr1 were up-regulated both by high extracellular calcium and by VD3, 3) the genes such as mmp1b, mmp3 and c3 which possibly stimulate bone resorption by osteoclast, were commonly up-regulated, 4) the gene such as c1q and msr2 which were related with macrophage function, were commonly down-regulated, 5) the genes which possibly stimulate osteoblast differentiation and/or mineralization of extracellular matrix, were commonly down-regulated; slc8a1, admr, plod2, lox, fosb, 6) the genes which possibly suppress osteoblast differentiation and/or mineralization of extracellular matrix, were commonly up-regulated; s100a4, npr3, mme, 7) the genes such as calponin 1 and tgfbi which possibly suppress osteoblast differentiation and/or mineralization of extracellular matrix, were up-regulated by high extracellular calcium but were down-regulated by VD3. These results suggest that in coculture condition, both high extracellular calcium and VD3 commonly induce osteoclastogenesis but suppress osteoblast differentiation/mineralization by regulating the expression of related genes.

Bioactive Polyglycolic Acid (PGA) or Polylactic Acid (PLA) Polymers on Extracellular Matrix Mineralization in Osteoblast-like Mc3T3-E1 Cells

  • Cho, Young-Eun;Kim, Hye-Jin;Kim, Yong-Ha;Choi, Jae-Won;Kim, Youn-Jung;Kim, Gab-Joong;Kim, Jin-Su;Choi, Sik-Young;Kwun, In-Sook
    • Nutritional Sciences
    • /
    • v.9 no.4
    • /
    • pp.233-239
    • /
    • 2006
  • Porous matrices of bioactive polymers such as polyglycolic acid (PGA) or polylactic acid (PLA) can be used as scaffolds in bone tissue growth during bone repair process. These polymers are highly porous and serve as a template for the growth and organization of new bone tissues. We evaluated the effect of PGA and PLA polymers on osteoblastic MC3T3-E1 cell extracellular mineralization. MC3T3-E1 cells were cultured in a time-dependent manner -1, 15, 25d as appropriate - for the period of bone formation stages in one of the five culture circumstances, such as normal osteogenic differentiation medium, PGA-plated, fetal bovine serum (FBS)-plated, PGA/FBS-coplated, and PLA-plated For the evaluation of bone formation, minerals (Ca, Mg, Mn) and alkaline phosphatase activity, a marker for osteoblast differentiation, were measured Alizarin Red staining was used for the measurement of extracellular matrix Ca deposit During the culture period, PGA-plated one was reabsorbed into the medium more easily and faster than the PLA-plated one. At day 15, at the middle stage of bone formation, cellular Ca and Mg levels showed higher tendency in PGA- or PLA-plated treatments compared to non-plated control and at day 25, at the early late stage of bone formation, all three cellular Ca, Mg or Mn levels showed higher tendency as in order of PGA-related treatments and PLA-plated treatments, compared to control even without significance. Medium Ca, Mg or Mn levels didn't show any consistent tendency. Cellular ALP activity was higher in the PGA- or PLA-plated treatments compare to normal osteogenic medium treatment PGA-plated and PGA/FBS-plated treatments showed better Ca deposits than other treatments by measurement of Alizarin Red staining, although PLA-plated treatment also showed reasonable Ca deposit. The results of the present study suggest that biodegradable material, PGA and also with less extent for PLA, can be used as a biomaterial for better extracellular matrix mineralization in osteoblastic MC3T3-E1 cells.

Effects of rhubarb extract on osteoclast differentiation in bone marrow-derived macrophages (대황 추출물이 골수유래 대식세포의 파골세포 분화에 미치는 영향)

  • In-A Cho
    • Journal of Korean society of Dental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.219-226
    • /
    • 2023
  • Objectives: This study aimed to investigate the effects of rhubarb extract on osteoclast differentiation in bone marrow-derived macrophages (BMMs). Osteoclasts are vital for bone resorption and remodeling. Osteoclast dysregulation can contribute to various bone-related disorders that directly affect oral health. Rhubarb, a medicinal plant with anti-inflammatory properties, has been shown to modulate bone metabolism. Methods: BMMs were isolated from the femurs and tibias of 5-week-old C57BL/6 mice and cultured in the presence of mouse macrophage colony-stimulating factor (M-CSF) for 3 days. Subsequently, BMMs were treated with M-CSF and receptor activator of nuclear factor-κB ligand (RANKL) to induce osteoclast differentiation. Results: Rhubarb extract effectively suppressed osteoclast differentiation in BMMs. Furthermore, rhubarb extract inhibited the mRNA expression of tartrate-resistant acid phosphatase (TRAP) and cathepsin K (CTSK), which are essential for osteoclastogenesis. Moreover, it inhibited the RANKL-induced expression of nuclear factor of activated T cell c1 (NFATc1), a crucial transcription factor in osteoclast differentiation. Conclusions: These results suggest that rhubarb extract promotes oral health by inhibiting osteoclastogenesis in BMMs. Thus, rhubarb extract shows promise as a therapeutic agent for bone-related disorders that directly affect oral health, particularly those associated with abnormal osteoclast activity. Further research and exploration of the underlying mechanisms are warranted to fully understand their potential clinical applications.

High Extracellular Calcium Increased Expression of Ank, PC-1 and Osteopontin in Mouse Calvarial Cells

  • Song, Mi-Na;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.33 no.1
    • /
    • pp.33-43
    • /
    • 2008
  • In the process of bone remodeling, mineral phase of bone is dissolved by osteoclasts, resulting in elevation of calcium concentration in micro-environment. This study was performed to explore the effect of high extracellular calcium ($Ca{^{2+}}_e$) on mineralized nodule formation and on the expression of progressive ankylosis (Ank), plasma cell membrane glycoprotein-1 (PC-1) and osteopontin by primary cultured mouse calvarial cells. Osteoblastic differentiation and mineralized nodule formation was induced by culture of mouse calvarial cells in osteoblast differentiation medium containing ascorbic acid and ${\beta}$-glycerophosphate. Although Ank, PC-1 and osteopontin are well known inhibitors of mineralization, expression of these genes were induced at the later stage of osteoblast differentiation during when expression of osteocalcin, a late marker gene of osteoblast differentiation, was induced and mineralization was actively progressing. High $Ca{^{2+}}_e$(10 mM) treatment highly enhanced mRNA expression of Ank, PC-1 and osteopontin in the late stage of osteoblast differentiation but not in the early stage. Inhibition of p44/42 MAPK activation but not that of protein kinase C suppressed high $Ca{^{2+}}_{e^-}$induced expression of Ank, PC-1 and osteopontin. When high $Ca{^{2+}}_e$(5 mM or 10 mM) was present in culture medium during when mineral deposition was actively progressing, matrix calcifiation was significantly increased by high $Ca{^{2+}}_e$. This stimulatory effect was abolished by pyrophosphate (5 mM) or levamisole (0.1-0.5 mM), an alkaline phosphatase inhibitor. In addition, probenecid (2mM), an inhibitor of Ank, suppressed matrix calcification in both control and high $Ca{^{2+}}_{e^-}$treated group, suggesting the possible role of Ank in matrix calcification by osteoblasts. Taken together, these results showed that high $Ca{^{2+}}_e$ stimulates expression of Ank, PC-1 and osteopontin as well as matrix calcification in late differentiation stage of osteoblasts and that p44/42 MAPK activation is involved in high $Ca{^{2+}}_{e^-}$induced expression of Ank, PC-1 and osteopontin.

Development of a Tensile Cell Stimulator to Study the Effects of Uniaxial Tensile Stress on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells (세포 인장 자극기의 개발과 세포 인장 자극을 통한 성체 줄기세포의 골분화 유도)

  • Shin, Hyun-Jun;Lee, Woo-Teak;Park, Suk-Hoon;Lee, Sun-Hwa;Park, Jung-Ho;Yoon, Yong-San;Shin, Jennifer H.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.629-636
    • /
    • 2009
  • Mechanical stimulation is known to play a vital role on the differentiation of mesenchymal stem cells (MSCs) to pre-osteoblasts. In this research, we developed a tensile cell stimulator, composed of a DC motor-driven actuator and LVDT sensor for measuring linear displacement, to study the effects of tensile stress on osteogenic differentiation of MSCs. First, we demonstrated the reliability of this device by showing the uniform strain field in the silicon substrate. Secondly, we investigated the effects of tensile stretching on osteogenic differentiation. We imposed a pre-set cyclic strain at a fixed frequency on cell monolayer cultured on a flexible silicon substrate while varying its amplitude and duration. 60 min of resting period was allowed between 30 min of cyclic stretching and this cycle is repeated up to 7 days. Under the combined stimulation with osteogenic media and mechanical stretching, the osteogenic markers such as alkaline phosphatase (ALP), osterix, and osteopontin began to get expressed as early as 4 days of stimulation, which is much shorter than what is typically required for osteogenic media induced differentiation. Moreover, different markers were induced at different magnitudes of the applied strains. Lastly, for the case of ALP, we observed the antagonistic effects of osteogenic media when combined with mechanical stretching.

Direct reprogramming of fibroblasts into diverse lineage cells by DNA demethylation followed by differentiating cultures

  • Yang, Dong-Wook;Moon, Jung-Sun;Ko, Hyun-Mi;Shin, Yeo-Kyeong;Fukumoto, Satoshi;Kim, Sun-Hun;Kim, Min-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.463-472
    • /
    • 2020
  • Direct reprogramming, also known as a trans-differentiation, is a technique to allow mature cells to be converted into other types of cells without inducing a pluripotent stage. It has been suggested as a major strategy to acquire the desired type of cells in cell-based therapies to repair damaged tissues. Studies related to switching the fate of cells through epigenetic modification have been progressing and they can bypass safety issues raised by the virus-based transfection methods. In this study, a protocol was established to directly convert fully differentiated fibroblasts into diverse mesenchymal-lineage cells, such as osteoblasts, adipocytes, chondrocytes, and ectodermal cells, including neurons, by means of DNA demethylation, immediately followed by culturing in various differentiating media. First, 24 h exposure of 5-azacytidine (5-aza-CN), a well-characterized DNA methyl transferase inhibitor, to NIH-3T3 murine fibroblast cells induced the expression of stem-cell markers, that is, increasing cell plasticity. Next, 5-aza-CN treated fibroblasts were cultured in osteogenic, adipogenic, chondrogenic, and neurogenic media with or without bone morphogenetic protein 2 for a designated period. Differentiation of each desired type of cell was verified by quantitative reverse transcriptase-polymerase chain reaction/western blot assays for appropriate marker expression and by various staining methods, such as alkaline phosphatase/alizarin red S/oil red O/alcian blue. These proposed procedures allowed easier acquisition of the desired cells without any transgenic modification, using direct reprogramming technology, and thus may help make it more available in the clinical fields of regenerative medicine.