• 제목/요약/키워드: Cultured bone cell

검색결과 288건 처리시간 0.028초

인간 골막기원세포와 Polydioxanone/Pluronic F127 담체를 이용한 골형성 (In vivo Osteogenesis of Cultured Human Periosteal-derived Cells and Polydioxanone/Pluronic F127 Scaffold)

  • 박봉욱;이진호;오세행;김상준;하영술;전령훈;맹건호;노규진;김종렬;변준호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제34권6호
    • /
    • pp.384-390
    • /
    • 2012
  • Purpose: The purpose of this study is to examine in vivo osteogenesis of cultured human periosteal-derived cells and polydioxanone/pluronic F127 scaffold. Methods: Two one-year-old miniature pigs were used in this study. $2{\times}10^6$ periosteal-derived cells in 1 mL medium were seeded by dropping the cell suspension into the polydioxanone/pluronic F127 scaffold. These cell-scaffold constructs were cultured in osteogenic Dulbecco's modified Eagle's medium for 7 days. Under general anesthesia with azaperone and tiletamine-zolazepam, the mandibular body and ramus of the pigs were exposed. Three bony defects were created. Polydioxanone/pluronic F127 scaffold with periosteal-derived cells and the scaffold only were implanted into each defect. Another defect was left empty. Twelve weeks after implantation, the animals were sacrificed. Results: New bone formation was clearly observed in the polydioxanone/pluronic F127 scaffold with periosteal-derived cells. Newly generated bone was also observed in the scaffold without periosteal-derived osteoblasts and empty defect, but was mostly limited to the periphery. Conclusion: These results suggest that cultured human periosteal-derived cells have good osteogenic capacity in a polydioxanone/pluronic F127 scaffold, which provides a proper environment for the osteoblastic differentiation of these cells.

성견 치계줄기세포 및 골수줄기세포 특성에 관한 연구 (Investigation of postnatal stem cells from canine dental tissue and bone marrow)

  • 진민주;김영성;김수환;김경화;이철우;구기태;김태일;설양조;구영;류인철;정종평;이용무
    • Journal of Periodontal and Implant Science
    • /
    • 제39권2호
    • /
    • pp.119-128
    • /
    • 2009
  • Purpose: The aim of this study was to evaluate the stemness of cells from canine dental tissues and bone marrow. Methods: Canine periodontal ligament stem cells (PDLSC), alveolar bone stem cells (ABSC) and bone marrow stem cells(BMSC) were isolated and cultured. Cell differentiations (osteogenic, adipogenic and chondrogenic) and surface antigens (CD146, STRO-1, CD44, CD90, CD45, CD34) were evaluated in vitro. The cells were transplanted into the subcutaneous space of nude mice to assess capacity for ectopic bone formation at 8 weeks after implantation. Results: PDLSC, ABSC and BMSC differentiated into osteoblasts, adipocytes and chondrocytes under defined condition. The cells expressed the mesenchymal stem cell markers differently. When transplanted into athymic nude mice, these three kinds of cells with hydroxyapatite /${\beta}$- tricalcium phosphate (HA/TCP) carrier showed ectopic bone formation. Conclusions: This study demonstrated that canine dental stem cells have stemness like bone marrow stem cells. Transplantation of these cells might be used as a therapeutic approach for dental stem cell-mediated periodontal tissue regeneration.

혈관내피유사세포 채취의 원천으로 골막의 활용 (Use of Peristeum as a Source of Endothelial-like Cells)

  • 박봉욱;김신원;김욱규;하영술;김진현;김덕룡;성일용;조영철;손장호;김종렬;변준호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제33권5호
    • /
    • pp.385-391
    • /
    • 2011
  • Purpose: The periosteum is a well-known source of osteogenic precursor cells for tissue-engineered bone formation. However, cultured endothelial or endothelial-like cells derived from periosteum have not yet been investigated. This study focused on endothelial-like cell culture from the periosteum. Methods: Periosteal tissues were harvested from the mandible during surgical extraction of lower impacted third molars. The tissues were treated with 0.075% type I collagenase in phosphate-buffered saline (PBS) for 1 hr at $37^{\circ}C$ to release cellular fractions. The collagenase was inactivated with an equal volume of DMEM/10% fetal bovine serum (FBS) and the infranatant was centrifuged for 10 min at 2,400 rpm. The cellular pellet was filtered through a $100{\mu}m$ nylon cell strainer, and the filtered cells were centrifuged for 10 min at 2,400 rpm. The resuspended cells were plated into T25 flasks and cultured in endothelial cell basal medium (EBM)-2. Results: Among the hematopoietic markers, CD146 was more highly expressed than CD31 and CD34. The periosteal-derived cells also expressed CD90 and CD166, mesenchymal stem cell markers. Considering that the expression of CD146 was constant and that the expression of CD90 was lower at passage 5, respectively, the CD146 positive cells in passage 5 were isolated using the magnetic cell sorting (MACS) system. These CD146 sorted, periosteal-derived cells formed tube-like structures on Matrigel. The uptake of acetylated, low-density lipoprotein, labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI-Ac-LDL) was also examined in these cells. Conclusion: These results suggest that the CD146-sorted positive cells can be referred to as periosteal-derived CD146 positive endothelial-like cells. In particular, when a co-culture system with endothelial and osteoblastic cells in a three-dimensional scaffold is used, the use of periosteum as a single cell source would be strongly beneficial for bone tissue engineering.

혈소판 농축혈장이 조골세포의 초기부착과 증식 및 활성에 미치는 생물학적 영향 (Biological Effect of Platelet Rich Plasma on the Initial Attachment, Proliferation and Cellular Activity of Osteoblast)

  • 박상일;임성빈;김정근;정진형
    • Journal of Periodontal and Implant Science
    • /
    • 제31권3호
    • /
    • pp.513-529
    • /
    • 2001
  • For reconstruction of the bony defect, various artificial substitutes were developed. Among them, there has been a study of calcium phosphate coated bone substitutes for increasing attachment of osteoblasts in vivo. The purpose of this study was to evaluate the effects of serum and platelet-rich plasma (PRP) on calcium phosphate coated culture plate for the initial attachment, proliferation and activity of osteoblasts. After sampling the blood from white rats and concentrating by centrifugation, the amount of attachment of PDGF-BB and $TGF-{\beta}$ on the calcium phosphate coated culture plate was measured. Cultured HOS and ROS 17/2.8 cell was measured on attachment level and proliferation rate of osteoblasts. Alkaline phosphatase activity of HOS and ROS 17/2.8 cell was measured for studying on the activating rate of osteoblast. 1. Counting the amount of platelets of seperated plasma and PRP, the average number of platelets was 177,003 $cell/{\mu}l$ in plasma, and 1,656,062 $cell/{\mu}l$ in PRP, which was about 9 times as high as in plasma. 2. Amount of PDGF-BB deposited at calcium phosphate coated plate had increased by the total amount of plasma and PRP on the culture plate, whereas $TGF-{\beta}$had been deposited on the plate only when treated by $50{\mu}{\ell}$ of PRP(p<0.01). 3. After plating serum and PRP for 3 hours, we attached with HOS and ROS17/2.8 cell for 1 hour and 4 hours. There were no significant difference of the attachment between serum and control group, whereas there were significantly difference of the attachment between depositioning of PRP and control group. 4. After attaching plasma and PRP for 3 hours, cell number has much increased when HOS and ROS17/2.8 cell had been cultured for 48 hours(p<0.05). 5. After attaching plasma and PRP for 3 hours, concentration of alkaline-phosphatase has increased when HOS and ROS17/2.8 cell had been cultured for 48 hours(p<0.01). These results suggested that PRP affected on initial cell attachment rather than proliferation and activation of osteoblasts at calcium phosphate coated plate.

  • PDF

SCF에서 배양한 결합조직형 비만세포에서 mMCP-6 발현을 조절하는 MITF 이형체 (Alternative Isoforms of the mi Transcription Factor (MITF) Regulate the Expression of mMCP-6 in the Connective Tissue-Type Mast Cells Cultured with Stem Cell Factor)

  • 이선희;관수영;김대기
    • 생명과학회지
    • /
    • 제18권10호
    • /
    • pp.1348-1354
    • /
    • 2008
  • mi transcription factor (MITF)는 비만세포의 분화를 조절하는 중요한 전사인자이다. 특히 MITF는 결합조직형 비만세포에서 일반적으로 발현하는 비만세포 특이적 세린 단백분해효소의 일종인 mMCP-6 유전자의 전사를 조절한다. 본 연구는 마우스 골수유래 배양비만세포에서 mMCP-6 유전자의 전사를 조절하는 MITF이형체를 규명하였다. MITF 이형체들의 발현은 RT-PCR로 확인하였다. IL-3존재 하에서 배양한 점막형 비만세포들은 MITF-A,-E, -H, -Mc 등이 발현하였다. 반면에 SCF존재 하에서 배양한 결합조직형 비만세포들은 MITF-A가 발현하였다. MITF이형체를 과발현시키면 NIH-3T3 세포에서 mMCP-6 promoter를 통한 luciferase 활성을 증가시키고, MC/9 비만세포주에서는 증가된 mMCP-6발현을 유도하였다. 더불어 비만세포에서의 mMCP-6 발현은 MITF-A 고갈로 인하여 유의적으로 억제되었다. MITF-A의 전사활성과 DNA결합은 MITF-E, -H, -Mc 등의 타 이형체들의 결과와 유사하였다. 따라서 본 연구의 결과들은 MITF-A가 마우스 결합조직형 비만세포에서 발현하여 mMCP-6 전사를 조절하는 중요한 이형체임을 제시한다.

Graphene accelerates osteoblast attachment and biomineralization

  • Ren, Jia;Zhang, Xiaogang;Chen, Yao
    • Carbon letters
    • /
    • 제22권
    • /
    • pp.42-47
    • /
    • 2017
  • In this paper, the in vitro biocompatibility of graphene film (GF) with osteoblasts was evaluated through cell adhesion, viability, alkaline phosphatase activity, F-actin and vinculin expressions, versus graphite paper as a reference material. The results showed that MG-63 cells exhibited stronger cell adhesion, better proliferation and viability on GF, and osteoblasts cultured on GF exhibited vinculin expression throughout the cell body. The rougher and wrinkled surface morphology, higher elastic modulus and easy out-of-plane deformation associated with GF were considered to promote cell adhesion. Also, the biomineralization of GF was assessed by soaking in simulated body fluid, and the GF exhibited enhanced mineralization ability in terms of mineral deposition, which almost pervaded the entire GF surface. Our results suggest that graphene promotes cell adhesion, activity and the formation of bone-like apatite. This research is expected to facilitate a better understanding of graphene-cell interactions and potential applications of graphene as a promising toughening nanofiller in bioceramics used in load-bearing implants.

치주인대섬유아세포가 파골세포분화에 미치는 영향 (Human Periodontal Ligament Fibroblasts Support the Osteoclastogenesis of RAW264.7 Cells)

  • 이호;전용선;최승환;김형섭;오귀옥
    • Journal of Periodontal and Implant Science
    • /
    • 제32권4호
    • /
    • pp.733-744
    • /
    • 2002
  • The fibroblasts are the principal cells in the periodontal ligament of peridontium. As the periodontal ligament fibroblasts (PDLF) show similar phenotype with osteoblasts, the PDLF are thought to play an important role in alveolar bone remodeling. Cell-to-cell contacted signaling is crucial for osteoclast formation. Recently it has been reported that PDLJ enhance the bone resorbing activity of osteoclasts differentiated from hematopoietic preosteoclasts. The aims of this study were to $clarify\;^{1)}$ the mechanism of PDLF-induced osteoclastogenesis $and\;^{2)}$ whether we can use preosteoclast cell line instead of primary hematopoietic preosteoclast cells for studying the mechanism of PDLF-induced osteoclastogenesis. Osteoclastic differentiation of mouse macrophage cell line RAW264.7 was compared with that of mouse bone marrow-derived M-CSF dependent cell (MDBM), a well-known hematopoietic preosteoclast model, by examining, 1) osteoclast-specific gene expression such as calcitonin receptor, M-CSF receptor (c-fms), cathepsin K, receptoractivator nuclear factor kappa B (RANK) ,2) generation of TRAP(+) multinucleated cells (MNCs), and 3) generation of resorption pit on the $OAAS^{TM}$ plate. RAW264.7 cultured in the medium containing of soluble osteoclast differentiation Factor (sODF) showed similar phenotype with MDBM-derived osteoclasts, those are mRNA expression pattern of osteoclast-specific genes, TRAP(+) MNCs generation, and bone resorbing abivity. Formation of resorption pits by osteoclastic MNCs differentiated from sODF-treated RAW264.7, was completely blocked by the addition of osteoprotegerin (OPG), a soluble decoy receptor for ODF, to the sODF-containing culture me야um. The effects of PDLF on differentiation of RAW264.7 into the TRAP(+) multinucleated osteoclast-like cells were examined using coculture system. PDLF were fxed with paraformaldehyde, followed by coculture with RAW264.7, which induced formation of TRAP(+) MNCs in the absence of additional treatment of sODF. When compared with untreated and fixed PDLF (fPDLF), IL-1 ${\beta}$-treated, or lipopolysaccha-ride-treated and then fixed PDLF showed two-folld increase in the supporting activity of osteoclastogenesis from RAW264.7 coculture system. There were no TRAP(+) MNCs formation in coculture system of RAW264.7 with PDLF of no fixation. These findigs suggested that we can replace the primary hematopoietic preosteoclasts for RAW264. 7 cell line for studying the mechanism of PDLF-induced osteoclastogenesis, and we hypothesize that PDLF control osteoclastogenesis through ODF expression which might be enhanced by inflammatory signals.

식물성 에스트로겐이 MC3T3-El 골아세포의 성장과 Insulin-like Growth Factor-1(IGF-1)생성에 미치는 영향 (Effects of Phytoestrogen on Cell Growth and Insulin-like Growth Factor-I (IGF-I) Production in MC3T3-El Cells)

  • 권지영;남택정
    • 한국식품영양과학회지
    • /
    • 제34권6호
    • /
    • pp.743-749
    • /
    • 2005
  • 식물성 에스트로겐은 에스트로겐의 대체물질로서 골 형성을 촉진하며, 다른 부작용 없이 폐경기 이후 여성의 골다공증 예방에 효과적인 물질로 주목받고 있다. 본 연구에서는 식물성 에스트로겐의 골 형성과 관련된 생리학적 기능을 확인하고자 식물성 에스트로겐인 genistein, daidzein 및 resveratrol을 각각 $10^{-5}$ M 농도로 세포배양액 에 첨가하여 MC3T3-El 골아세포의 증식과 성장에 미치는 효과를 검토 하였다 그 결과 이들은 에스트로겐인 $17\beta$-estradiol과 마찬가지로 MC3T3-El 골아세포의 증식과 성장을 향상시켰으며, daidzein과 resveratrol의 효과는 genistein의 효과보다 큰 것으로 나타났다 골 형성 정도를 판단하는 생화학적 지표로 활용되고 골아세포의 증식과도 밀접한 관계를 가지는 alkaline phosphatase(ALP) 활성 또한 genistein, daidzein 및 resveratrol에 의해 증가하였다. 에스트로겐은 세포성장인자인 IGF-I의 국소적 생산과 분비를 촉진하며 간접적으로 골 대사 촉진 효과를 유도해낼 수 있다고 보고되어 있었지만 식물성 에스트로겐의 투여에 의해 IGF-I의 농도가 증가하였다는 보고는 없었다. 그러나 본 실험 결과, 식물성 에스트로겐인 genistein, daidzein 및 resveratrol은 IGF-I의 단백질과 mRNA 수준을 증가시키는 것으로 나타났다. 이상의 연구결과들은 식물성 에스트로겐의 골 형성 촉진 효과를 증명하는 것으로서 이들의 유용한 약리학적 기능을 뒷받침하는 하나의 근거로 활용될 수 있으리라 사료된다.

Regulation of bone formation by high glucose in PDL cells

  • Jung, In-Ok;Zhang, Cheng-Gao;Kim, Sung-Jin
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.80-80
    • /
    • 2003
  • Insulin-dependent or Type 1 diabetes mellitus (IDDM) has been associated with an increased severity of periodontal disease. Since periodontal ligament (PDL) cells play a significant role in maintenance and regeneration of mineralized tissue, the success of procedures, such as guided tissue regeneration, is directly related to the ability of these cells to augment mineralized tissue. In this study, we investigated the time- and dose-dependent effect of high glucose on the proliferation and collagen synthesis of human periodontal ligament (PDL) cells. PDL cells were treated with high glucose (22mM, 33mM, 44mM) for 1 or 2 days. High glucose significantly inhibited proliferation of PDL cells as a time- and dose-dependent manner as evidenced by MTT assay. PDL cells were cultured in high glucose media (22mM, 33mM, 44mM) for 24 h. The ratio of collagen content to total protein was evaluated, and the gene expression of type I collagen was assessed by RT - PCR. The high concentration of glucose inhibited collagen synthesis, a marker of bone formation activity. This study indicated high glucose concentration could alter the metabolism of periodontal ligament cell, leading to alveolar bone destruction.

  • PDF

법랑기질유도체를 도포한 타이태늄 표면에서 조골세포의 증식 및 분화 (Effects of enamel matrix derivative and titanium on the proliferation and differentiation of osteoblasts)

  • 박상현;이인경;양승민;신승윤;이용무;구영;류인철;정종평;한수부;최상묵
    • Journal of Periodontal and Implant Science
    • /
    • 제33권3호
    • /
    • pp.359-372
    • /
    • 2003
  • Among objectives of periodontal therapy. the principal one is the morphological and functional reconstruction of lost periodontal supporting tissues. This includes de novo formation of connective tissue attachment and the regrowth of alveolar bone. The use of enamel matrix derivative(EMD) may be a suitable means of regeneration new periodontal attachment in the infrabony defects. Implant used to replace lost tooth but, implantitis occurred after installation. The purpose of this study was to investigate the effects of EMD on differentiation and growth of osteoblast in titanium disc. Twentyfive millimeter diameter and 1mm thick Ti disc which was coated 25, 50, 100, 200${\mu}g$/ml of EMD(Emdogain(R)) used as experimental group, 25, 50, 100, 200ng/d of rhBMP-2 as positive control group, and no coat as negative control group. A human osteosarcoma cell line Saos-2 was cultured in Ti disc and cell proliferation and Alkaline phosphatase (ALP) activity were measured at 1 and 6 days. PCR was performed at 2 and 8 hours. Semi-quantitative RT-PCR for mRNA expressions of various osteoblastic differentiation markers -type I collagen, ALP, osteopontin, and bone sialoprotein - were performed at appropriate concentrations based upon the results of MTT and ALP assay. Cultured cell-disc complexes were prepared for scanning electron microscopy (SEM) at 2 hour. Data were analyzed using Mann-Whitney and repeated- measures 1-way analysis of variance(SPSS software version 10,SPSS. Chicago. IL). After culture, there was more osteoblast in EMD100${\mu}g$/ml than in EMD50, 200${\mu}g$/ml on day 6. There was significant difference in experimental and positive control group compared control group, as times go by(1 and 6 days). Alkaline phosphatase activity was different significantly in EMD100, 200${\mu}g$/ml and BMP100, 200${\mu}g$/ml on day 6. The results of reverse transcriptase-polymerase chain reaction (RT-PCR) showed that expression of mRNA for ALPase, collagen type I, osteopontin. hone sialoprotein and BMP-2 was detected at 2 hour and 8 hour in EMI 200${\mu}g$/ml subgroup and BMP100ng/ml subgroup. The results of this study suggest that application of enamel matrix derivative on osteoblast attached to titanium surface facilitate the expression of bone specific protein and the differentiation and growth of osteoblast.