• Title/Summary/Keyword: Cultured and wild

Search Result 291, Processing Time 0.018 seconds

Muscle Quality of Cultured and Wild Red sea bream (Pagrosomus auratus) (양식 및 자연산 도미(Pagrosomus auratus) 어육의 품질 특성에 관한 연구)

  • Lee, Kyung Hee;Lee, Young Soon
    • Korean journal of food and cookery science
    • /
    • v.15 no.6
    • /
    • pp.639-644
    • /
    • 1999
  • The objective of this study was to compare the quality characteristics of cultured and red sea bream. The color of dorsal muscle was different between wild and cultured red sea bream. Lipid content of the dorsal muscle was higher in cultured fish than in wild one. The contents of moisture and crude protein in cultured fish muscle were almost same as those of wild one. Sensory evaluation of raw fish meat showed that cultured fish had lower preference in appearance, taste and texture than wild one. Especially the texture of cultured raw fish meat had lower preference than wild meat. For cooked fish meat, cultured fish were harder and less juicy than wild fish. These textural differences between wild and cultured meats were confirmed by objective evaluation including the measurements of hardness, springiness, and cohesiveness. Light microscopic observation showed that cultured red sea bream had more lipid in the surface layer near epidermis than wild one. Also more lipid droplet between muscle fibers were observed in cultured red sea bream by SEM.

  • PDF

The Effect of Lipid and Collagen Content, Drip Volume on the Muscle Hardness of Cultured and Wild Red sea bream (Pagrosomus auratus) and Flounder (Paralichthys olivaceus) (지질 및 콜라겐, Drip 량이 양식 및 자연산 도미와 넙치 육질의 경도에 미치는 영향)

  • 이경희;이영순
    • Korean journal of food and cookery science
    • /
    • v.16 no.4
    • /
    • pp.352-357
    • /
    • 2000
  • This study was conducted to investigate the effect of the lipid and collagen content and drip volume on the hardness of fish meat. Red sea bream (cultured and wild) and flounder (cultured, cultured with obosan and wild) were used for this study. Textural differences between cultured and wild meats were determined by the measurements of hardness, lipid and collagen content, and drip volume. Lipid content of the dorsal muscle was higher especially in cultured red sea bream (3.32%) than in wild one. Cultured and wild flounder contained lower content of lipid than red sea bream. The content of collagen was higher in cultured flounder fed with obosan (8.37 mg/g muscle) and wild flounder (8.02 mg/g muscle) than others. Drip volume was the highest in cultured flounder fed with obosan (8.67%). The hardness of raw meat was correlated with the contents of lipid (r= -0.7063) and collagen (r= 0.8307), significantly. Cultured fish contained more lipid and less collagen than wild one. So, the hardness of these fish meats was lower than wild one. However, cultured flounder fed with obosan showed no difference in hardness compared with wild one. In the cooked meat, there was no relationship between the hardness of fish meat and the contents of lipid and collagen. But, the drip volume was significantly related with the hardness (r= 0.6870). From these results, the factors contributing the textural difference between wild and cultured fish meat would be the lipid and collagen contents, and two ways to improve the texture of cultured fish meat could be suggested. One is to lower the lipid content by feed control, and the other is to raise the collagen content by inducing more fish movement.

  • PDF

Observation of Muscle Structure and DSC Measurement of Collagen of the Cultured and Wild Red Sea Bream and Flounder. (양식 및 자연산 도미와 넙치 어육 중의 콜라겐 DSC 측정 및 근육 조직 관찰)

  • 이경희;이영순
    • Korean journal of food and cookery science
    • /
    • v.17 no.6
    • /
    • pp.549-554
    • /
    • 2001
  • Thermal measurements were made for connective tissues of 5 different fish muscles by using a differential scanning calorimeter(DSC), and connective tissues between muscle fibers and the cross sections of muscle fibers were observed by a light microscope. Red sea bream(cultured and wild) and flounder(cultured, cultured with obosan and wild) were used in this study. It was found that the connective tissues of cultured and frozen fish muscle required less endothermic enthalpy and the endothermic peak temperature was lower than those of wild and fresh ones when they were shrunken and denatured. Therefore, it is likely that the former are more unstable to heat than the latter. The cultured flounder fed with obosan and wild flounder which contained more collagen than cultured flounder and the wild red sea bream showed clear connective tissues between fibers. The cross-section of cultured fish muscle fiber was larger than that of wild one. From these results, collagen content and thermal properties of collagen, cross section of muscle fibers seemed to contribute to the textural difference between wild and cultured fish.

  • PDF

Changes of Nucleotides and their Related Compounds in Cultured and Wild Red Sea Bream and Flounder muscle (양식 및.자연산 도미와 넙치 어육 중의 핵산관련물질의 변화)

  • 이경희;이영순
    • Korean journal of food and cookery science
    • /
    • v.17 no.5
    • /
    • pp.517-522
    • /
    • 2001
  • Changes of nucleotides and their related compounds in raw, cooked and frozen fish muscle were studied with HPLC. Red sea bream(cultured and wild) and flounder(cultured, cultured with Obosan(equation omitted) and wild) were used for this study. In nucleotides, contents of ATP was similar to that of IMP and some of H$\times$R(inosine) and H$\times$(hypoxanthine) were existed in fresh muscle. ATP was decomposed rapidly and contents of IMP became different between cultured and wild fish after 6 hours. The content of IMP was lower in the cultured red sea bream(3.39$\mu$ mole/g) and flounder(3.17$\mu$ mole/g) than in the wi1d red sea bream(7.31$\mu$ mole/g) and flounder(5.03$\mu$ mole/g). But, the flounder cultured with Obosan contained the largest amounts of IMP After 24 hours, K values of cultured fish muscle(27.7%, 28.2%) were higher than that of wild ones(22.8%, 24.3%). The K value of cultured flounder fed with 0.3% Obosan(equation omitted)(25.7%) was between cultured and wild flounder. IMP was the one which existed the most in cooked and frozen muscle. Amounts of H$\times$R and H$\times$ were more in cooked and frozen muscle. than in raw muscle. From these results, we could suggest that the wild one was more palatable and fresher than the cultured one and the palatability of cultured one seemed to be improved depanding on the feed.

  • PDF

Genetic Similarity and Variation in the Cultured and Wild Crucian Carp (Carassius carassius) Estimated with Random Amplified Polymorphic DNA

  • Yoon, Jong-Man;Park, Hong-Yang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.4
    • /
    • pp.470-476
    • /
    • 2002
  • Random amplified polymorphic DNA (RAPD) analysis based on numerous polymorphic bands have been used to investigate genetic similarity and diversity among and within two cultured and wild populations represented by the species crucian carp (Carassius carassius). From RAPD analysis using five primers, a total of 442 polymorphic bands were obtained in the two populations and 273 were found to be specific to a wild population. 169 polymorphic bands were also produced in wild and cultured population. According to RAPD-based estimates, the average number of polymorphic bands in the wild population was approximately 1.5 times as diverse as that in cultured. The average number of polymorphic bands in each population was found to be different and was higher in the wild than in the cultured population. Comparison of banding patterns in the cultured and wild populations revealed substantial differences supporting a previous assessment that the populations may have been subjected to a long period of geographical isolation from each other. The values in wild population altered from 0.21 to 0.51 as calculated by bandsharing analysis. Also, the average level of bandsharing values was $0.40{\pm}0.05 $ in the wild population, compared to $0.69{\pm}0.08$ in the cultured. With reference to bandsharing values and banding patterns, the wild population was considerably more diverse than the cultured. Knowledge of the genetic diversity of crucian carp could help in formulating more effective strategies for managing this aquacultural fish species and also in evaluating the potential genetic effects induced by hatchery operations.

Comparative Analysis of Proximate Compositions and Lipid Component in Cultured and Wild Mackerel Scomber japonicus Muscles (양식산 및 천연산 고등어근육의 일반성분과 지질성분 비교)

  • Moon, Soo-Kyung;Hong, Seok-Nam;Kim, In-Soo;Jeong, Bo-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.5
    • /
    • pp.411-416
    • /
    • 2009
  • Proximate compositions and fatty acid profiles of cultured and wild mackerel (Scomber japonicus) muscles were compared. Protein content ranged from approximately 16% to 18% and was higher in wild fish than in cultured ones. Lipid content was between two to four times higher in large and small cultured fish (20.1-20.5%) compared with same sized wild fish. The prominent non-polar lipid (NL) class in fish muscles was triglyceride, and additionally, free sterol was among the prominent NL classes in wild fish muscles. Prominent phospholipid (PL) classes in cultured and wild fish muscles were phosphatidylethanolamine and phosphatidylcholine, with the former being higher in cultured fish and the latter higher in wild fish. Prominent fatty acids of total lipid were 16:0, 18:1n-9, 22:6n-3 (docosahexaenoic acid, DHA), 20:5n-3 (eicosapentaenoic acid, EPA), 16:1n-7, 18:0 and 14:0, while 18:2n-6 was among the prominent fatty acids in cultured fish. The n-3 polyunsaturated fatty acids (PUFA, DHA+EPA) content (in mg/100 g of muscle tissue) was higher in cultured fish (2,711 mg in large fish and 2,572 mg in small fish) than in wild fish (2,431 mg in large fish and 1,398 mg in small fish). In conclusion, we have been able to demonstrate that cultured mackerel could also be a good sources of n-3 PUFA, such as DHA and EPA.

Genetic Variation and Differences within and between Populations of Cultured and Wild Bullhead (Pseudobagrus fulvidraco) Revealed by RAPD-PCR

  • Yoon Jong-Man;Kim Gye-Woong;Park Hong-Yang
    • Reproductive and Developmental Biology
    • /
    • v.29 no.4
    • /
    • pp.213-221
    • /
    • 2005
  • We used nine decamer primers to generate DNA fragment sizes ranging from 100 bp to 1,600 bp from two bullhead (Pseudobagrus fulvidraco) populations of Dangjin in Korea. 376 fragments were identified in the cultured bullhead population, and 454 in the population of wild bullhead from Dangjin: 287 specific fragments $(76.3\%)$ in the cultured bullhead population and 207 $(45.6\%)$ in the wild bullhead population. On average, a decamer primer was used to generate 34.2 amplified products in a cultured bullhead. A RAPD primer was used to generate an average of 3.1 amplified bands per sample, ranging between 2.5 and 6.0 fragments in this population. Nine primers also generated 24 polymorphic fragments (24/376 fragment, $6.4\%$) in the cultured bullhead population, and 24 (24/454 fragments, $5.2\%$) in the wild bullhead population. The OPA-16 primer, notably, produced which 11 out of 11 bands $(100\%)$ were monomorphic in the wild bullhead population. 110 intra-population-specific fragments, with an average of 12.2 per primer, were observed in the cultured bullhead population. 99 fragments, with an average of 11.0 per primer, were identified in the wild bullhead. Especially, 55 inter-population-common fragments, with an average of 6.1 per primer, were observed in the two bullhead populations. The bandsharing value (BS value) of individuals within the wild bullhead population was substantially higher than was determined in the cultured bullhead population. The average bandsharing value was $0.596\pm0.010$ within the cultured bullhead population,. and $0.657\pm0.010$ within the wild bullhead population. The dendrogram obtained with the nine primers indicates two genetic clusters, designated cluster $1\;(CULTURED\;01\~CULTURED\;11)$, and cluster $2\;(WILD\;12\~WILD\;22)$. Ultimately, the longest genetic distance displaying significant molecular differences was determined to exist between individuals in the two bullhead populations, namely between individuals WILD no. 19 of the wild bullhead population and CULTURED no. 03 of the cultured bullhead population (genetic distance = 0.714). RAPD-PCR allowed us to detect the existence of population discrimination and genetic variation in Korean population of bullhead. This finding indicates that this method constitutes a suitable tool for DNA comparison, both within and between individuals, populations, species, and genera.

Effects of Storage Temperature on the Post-Mortem Changes of Wild and Cultured Olive Flounder Muscle

  • Cho Young Je;Kim Tae Jin;Yoon Ho Dong
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.161-166
    • /
    • 1999
  • The rigor-mortis progress of cultured olive flounder spiked at the brain started much faster than that of wild one. They attained full rigor state after 30 hrs at $0^{\circ}C$, 36 hrs at $5^{\circ}C$ and 50 hrs at $10^{\circ}C$ in the cultured flounder, while after 36 hrs at $0^{\circ}C$, 50 hrs at $5^{\circ}C$, and 60 hrs at $10^{\circ}C$ in the wild. ATP concentration in the muscle was around $5.9\mu mol/g$ for wild and $6.2\mu mol/g$ for cultured flounder. ATP breakdown progressed rapidly in $0^{\circ}C$ samples, followed by $5^{\circ}C$ and $10^{\circ}C$ samples. $Mg^{2+}$-ATPase activity of myofibrillar protein in the presence of 0.25mM CaCb was higher in cultured myofibri1lar protein than in wild one. $Mg^{2+}$-ATPase activities of myofibrillar protein increased during storage in samples stored at $0^{\circ}C$ and $5^{\circ}C$ while decreased in samples stored at $10^{\circ}C$. The level of breaking strength of muscle immediately after death was higher in the wild muscle than in the cultured muscle. The breaking strength reached maximum level at 10 hrs after death in both samples.

  • PDF

Effects of Cultured Wild-Ginseng Root and Xylitol on Fermentation of Kimchi

  • Lee, Kun-Jong;Sung, Jung-Min;Kwon, Yong-Suk;Chung, Heajung
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.1
    • /
    • pp.49-57
    • /
    • 2014
  • This study evaluates the effects of cultured wild ginseng root (0.05%, 0.1% v/w) and xylitol in kimchi. The fermented characteristics of kimchi were investigated during 28 days of fermentation at $4^{\circ}C$. The pH value in the sample with the cultured wild ginseng root was higher than that of control group. The total acidity in the sugar groups (SG groups) was higher than that of xylitol groups (XG groups). Comparing total bacterial count, XG groups were lower than SG groups, regardless of the additional ratio of the cultured wild ginseng root. Reducing sugar of XG groups decreased more slowly than SG groups for seven days; glucose and fructose of XG groups were lower than the control group. DPPH radical scavenging activity was higher in groups with cultured wild ginseng root than in control. In the result of sensory evaluation, XG groups were more preferred than other groups. In conclusion, our results indicate that cultured wild-ginseng root and xylitol have a positive effect on the quality of kimchi, such as antimicrobial and antioxidant functions.

Comparative lectin binding patterns of Cochlodinium polykrikoides Margalef

  • Rhodes, Lesley L.;Cho, Yong-Chul;Cho, Eun-Seob
    • Journal of the korean society of oceanography
    • /
    • v.35 no.3
    • /
    • pp.153-157
    • /
    • 2000
  • Four different FITC-conjugated lectins were used to visually evaluate lectin binding activity by optical staining quality using confocal laser scanning microscopy (CLSM) of Cochzodinium polykrikoides in nature (wild type) and culture (cultured type). Cells from the field and cultures treated with ConA fluoresced only at the outer cell wall, and the abundance and distribution of the fluorescent signal were similar. Treatment with PWM and HPA did not elicit fluorescence at the cell surface, but the wild type exposed to HPA showed greater binding than did the cultured cells, possibly due to greater concentrations of glucosamine. The wild type cells treated with LBL lectin showed a strong green fluorescence on the cell surface, whereas cultured cells did not. Signal intensity and abundance were greater than for any other lectins tested in this study. These results suggest that wild type and cultured type are significantly different based on surface sugar production. In particular, the wild type cells apear richer in galactosamine-like moieties. Neither glucose nor mannose-like moieties were present in either wild types or cultured cells.

  • PDF