• 제목/요약/키워드: Culture medium volume

검색결과 123건 처리시간 0.025초

고추의 소포자 배양 시 전처리 후 배지의 교환, 배지의 첨가 및 2층배양 시 하층고체 배지의 양이 배의 생산에 미치는 영향 (The effect of medium change after pretreating microspores, medium addition, and volume of under solid medium in double layer culture on the production of embryos in isolated microspore culture of hot pepper (Capsicum annuum L.))

  • 박은준;이종숙;안동주;김문자
    • Journal of Plant Biotechnology
    • /
    • 제37권4호
    • /
    • pp.494-504
    • /
    • 2010
  • 본 연구에서는 고추의 소포자 배양 시 전처리 후 배지의 교환 여부, 배양 후 새 배지의 첨가 및 2층배지 사용시 하층고체배지의 양이 배의 생산에 미치는 영향을 조사하였다. 고온 전처리 후 배양배지를 첨가하여 배양하는 것보다 사용한 전처리 배지를 새 배양 배지로 교환하여 배양 하는 것이 배의 생산에 효과적 이었으며, 고온전처리 기간은 1일이나 2일에 비해 3일이 효과적 이었다. 배양 후 새 배지의 첨가는 약전처리 시에는 효과가 없었으나 소포자 전처리 시에는 배의 유기와 발달 모두 크게 향상되었다. 새 배지의 첨가 시기는 배양 4일 후가, 첨가 횟수는 1회가 배의 생산에 가장 효과적이었다. 한편 2층배지 사용 시 첨가하는 새 배지의 양은 1.5 ml이 효과적이었으며 이보다 많은 양을 첨가하는 경우 배의 발생과 발달 모두 저하되었다. 액체배지 사용 시에 비해 2층배지 사용 시 배의 발달이 좋았다. 또 2층배지 사용 시 하층고체배지의 양이 3 ml 일 때 보다는 5 ml이나 7 ml일 때 배의 발생은 감소하였으나 배의 질이 향상되었다. 이와 같은 결과들은 고추에서 다수의 정상자엽배를 생산 할 수 있는 소포자 배양시스템을 확립하는데 중요한 기초자료가 될 것이다.

Optimization of Embryo Density and the Volume of Culture Medium for an Improvement of Mouse Parthenogenetic Embryo Development

  • Roh Sangho;Choi Young-Joo;Min Byung-Moo
    • Reproductive and Developmental Biology
    • /
    • 제29권3호
    • /
    • pp.145-147
    • /
    • 2005
  • Autocrine or paracrine mediators released by the early embryo are implicated in the support of embryonic development. Their mechanisms and optimal embryo density in the medium, however, are uncertain. This study was conducted to establish the optimal embryo density and culture medium volume in mouse parthenogenetic embryo culture. In experiment 1, culture of parthenogenetirally activated oocytes at a concentration of $2{\~}4$ embryos/${\mu}L$ significantly improved development to the blastoryst stage ($72{\%}{\leq}$) compared with culture at the lower ($0.2{\~}1$e mbryos/${\mu}L,\;0\~37.5\%$) and the higher ($5{\~}6$ embryos/${\mu}L,\;30\~53\%$) concentration for 120 h when the oocytes were cultured in a 5 ${\mu}L$ drop under mineral oil In experiment 2, the embryos cultured at a concentration of $2{\~}4$ embryos/${\mu}L$ in a 10 ${\mu}L$ drop ($81.1{\%}$) showed significantly higher blastocyst rates than those in a 5 ${\mu}L$ drop ($68.5{\%}$). This study optimizes in vitro culture condition by modifying embryo density and the volume of culture medium It may give appropriate level of autocrine and/or paracrine factors to enhance viability and subsequent normal development of mouse parthenogenetic embryos in vitro.

배양액 용량이 B6D2F1 마우스 배아발생능력에 미치는 영향 (Effect of Different Volume of Microdrop Culture on B6D2F1 Mice Oogenesis)

  • 유창석;박기상;서병부
    • 한국수정란이식학회지
    • /
    • 제31권1호
    • /
    • pp.27-32
    • /
    • 2016
  • This study was conducted to evaluate the effects of different volume ($100{\mu}l$ vs. 2 ml) of microdrop culture on B6D2F1 mice oogenesis. In the present study, B6D2F1/CrljOri $F_1$ mice were utilized in order to maximize oogenesis. Also we used TCM-199, Dulbecco's medified Eagle's medium (DMEM), embryo culture medium (Fertilization medium, Cleavage medium, Blastocyst medium), G series medium and One step medium. Blastulation rate was not different between groups ($58.4{\pm}2.9%$ vs. $61.2{\pm}4.8%$). Zona hatched rate ($38{\pm}15.4%$ vs. $27{\pm}3.4%$) and attached rate ($55{\pm}13.9%$ vs. $46{\pm}3.9%$) did not differ by the volume of culture media. Total cell numbers ($59.8{\pm}9.7$ vs. $70.3{\pm}8.7$), ICM cell numbers ($15.8{\pm}0.6$ vs. $16.8{\pm}1.5$), TE cell numbers ($44.0{\pm}9.7$ vs. $53.6{\pm}7.3$), % ICM ($26.4{\pm}2.9%$ vs. $23.8{\pm}3.3%$) and ICM:TE ratio ($1:2.8{\pm}0.4$ vs. $1:3.2{\pm}0.6$) were not different between groups (i.e., $100{\mu}l$ vs. 2 ml). These results show that the capacity of the culture medium did not effect the cell numbers of B6D2F1 mice blastocysts. In summary, these results can provide fundamental data to maximize culture condition for in vitro fertilization on B6D2F1 mice.

Optimization of the in vitro fertilization system in pigs

  • Song-Hee Lee;Xiang-Shun Cui
    • 한국동물생명공학회지
    • /
    • 제38권2호
    • /
    • pp.70-76
    • /
    • 2023
  • Background: Despite considerable technological advancements, polyspermy remains a significant challenge in in vitro fertilization (IVF) procedures in pigs, disrupting normal embryonic development. Here, we aimed to determine whether optimal fertilization conditions reduce the polyspermy incidence in pigs. Methods: In vitro-matured oocytes were co-incubated with sperm according to a modified two-step culture system. Results: In the first experiment, oocytes were briefly co-incubated with sperm, washed in IVF medium, and then moved to fresh IVF medium for 5 or 6 h. Although the 6 h sperm-free cultured group had a higher penetration rate than the 5 h cultured group, the polyspermy rate significantly increased in the 6 h sperm-free cultured group. The gamete co-incubation period was either 20 or 40 min. The 40 min cultured group had a higher rate of blastocyst formation and number of total cells in blastocysts than the 20 min cultured group. In experiment 2, oocytes were inseminated with sperm separated by Pecroll treatment. Percoll treatment increased the rate of oocyte penetration and blastocyst formation compared to the control. In experiment 3, fertilized oocytes were cultured in 25 µL microdroplets (10 gametes/drop) or 500 µL (100 gametes/well) of culture medium in 4-well plates. The large volume of medium significantly reduced the number of dead oocytes and increased the rate of blastocyst formation compared to the small volume. Conclusions: Collectively, these results demonstrate that various fertilization conditions, including modified co-culture period, active sperm separation, and culture medium volume, enhance fertilization efficiency and subsequent embryonic development by decreasing polyspermy occurrence.

Kluyveromyces marxianus var. marxianus IFO 1735에 의한 Inulin Fructotransferase의 생산 및 이용에 관한 연구

  • 김재근;판정척부
    • 한국미생물·생명공학회지
    • /
    • 제25권3호
    • /
    • pp.277-285
    • /
    • 1997
  • Kluyveromyces marxianus var. marxianus isolated as an inulin-assimilating microorganism produces inulin fructotransferase (inulaseII) which catalyses the conversion of inulin into di-D-fructofuranose 1, 2' : 2, 3' dianhydrde (DFAIII). The DFA produced by the organism was isolated by using active carbon column, and identified as DFAIII by high performance liguid chromatography. The culture medium giving maximum inulaseII production was found to consist of 1% sucrose and 0.75% yeast nitrogen base (YNB). The inulasell production was induced by inulin or sucrose as a carbon source and increased by addition of YNB as a nitrogen source. Optimal initial pH of the culture medium, culture temperature and medium volume for the enzyme production were pH 4.7, 30$\circ$C and 140 ml, respectively. Under the optimal conditions described above, the enzyme activity in the culture supematant reached 4.2 units/ml after cultivation for 36 h. The DFAIII was accumulated at 13.25 mg/ml after 48 h of culture in the Jerusalem artichoke tuber medium.

  • PDF

In Vitro Development of Porcine Parthenogenetic Embryos under the Oil-free Culture System

  • Park, Sang-Kyu;Choi, Young-Ju;Roh, Sang-Ho
    • 한국수정란이식학회지
    • /
    • 제25권4호
    • /
    • pp.259-262
    • /
    • 2010
  • Optimization of the preimplantation mammalian embryo culture condition was widely focused on refining medium composition under the name of chemically defined media. However, recent research revealed that the alteration of physical environment can be a crucial factor to a successful embryo development. In this study, under the same embryo density, a novel culture device named oil-free micro tube culture (MTC) system was evaluated using porcine parthenogenetic embryos. The activated oocytes were placed into the 0.2 ml thin-wall flat cap PCR tube and cultured to the blastocyst stage. As a preliminary step, embryo density and culture medium volume were optimized under a standard drop culture system. The optimal embryo density range for in vitro culture was 0.5 embryos per ${\mu}l$ in $20\;{\mu}l$ drop (20.5%) and 1.0 embryos per ${\mu}l$ in $10\;{\mu}l$ drop (20.6%). Based on these results, we compared drop culture system and 'MTC' system in terms of the developmental rate to the blastocyst stage. In $20\;{\mu}l$ medium volume, the 'MTC' system showed similar blastocyst formation rate when compared with drop culture system (20.2% versus 20.5%, respectively) while the 'MTC' system showed lower blastocyst formation rate than drop culture system in $10\;{\mu}l$ one (12.7% versus 20.0%, respectively). Therefore the $20\;{\mu}l$ MTC system may be an alternative incubation system for short-distance embryo transport without carrying the $CO_2$ incubator and this provides novel embryo culture device to clinical veterinary embryologists.

Optimization and Mathematical Modeling of the Transtubular Bioreactor for the Production of Monoclonal Antibodies from a Hybridoma Cell Line

  • Halberstadt, Craig R.;Palsson, Bernhanrd O.;Midgley, A.Rees;Curl, Rane L.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권3호
    • /
    • pp.163-170
    • /
    • 2002
  • This report describes the use of a transtubular bioreactor to study the relative effects of diffusion versus perfusion of medium on antibody production by a hybridoma cell line. The study was performed with a high-density cell culture maintained in a serum-free, low-protein medium for 77 days. It was determined that the reactor possessed a macro-mixing pattern residence time distribution similar to a continuous stirred tank reactor (CSTR), However, due to the arrangement of the medium lines in the reactor, the flow patterns for nutrient distribution consist of largely independent medium path lengths ranging from short to long. When operated with cyclic, reversing, transtubular medium flow, some regions of the reactor (with short residence times) are more accessible to medium than others (with long residence times). From this standpoint, the reactor can be divided into three regions: a captive volume, which consists of medium primarily delivered via diffusion; a lapped volume, which provides nutrients through unilateral convection; and a swept volume, which operates through bilateral convection. The relative sizes of these three volumes were modified experimentally by changing the period over which the direction of medium flow was reversed from 15 min (larger captive volume) to 9 h (larger swept volume). The results suggest that antibody concentration increases as the size of the diffusion-limited (captive) volume is increased to a maximum at around 30 min with a sharp decrease thereafter. As reflected by changes in measured consumption of glucose and production of lactate, no significant difference in cellular metabolism occurred as the reactor was moved between these different states. These results indicate that the mode of operation of the transtubular bioreactor may influence antibody productivity under serum-free, low-protein conditions with minimal effects on cellular metabolism.

Optimal Culture Conditions for the Shoot Growth of Freesia 'Shiny Gold' during Bioreactor Culture

  • Kang, Ji Su;Jeong, Kyeong Jin;Choi, Youn Jung;Yun, Jae Gill
    • 한국자원식물학회지
    • /
    • 제30권6호
    • /
    • pp.699-706
    • /
    • 2017
  • For rapid production of freesia 'Shiny Gold' shoots by using a bioreactor, several culture conditions were investigated. Young shoots (< 1 cm) obtained from freesia corm section in vitro were used as plant materials for this experiment. As a basic experimental environment, 20 young shoots were inoculated into a 5 L balloon type bubble reactor which contained 1 L 1/2 strength MS medium supplemented with 30 g sucrose (3%), and the aeration was 0.1 vvm (vessel volumes per minute). The bioreactors were placed in a growth room with $23^{\circ}C$ temperature, 60% relative humidity and $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ light condition (16 h/8 h, day/night). The concentrations of MS media were set with 1/4, 1/2, 1 strength, medium volume 10, 20, 40%, sucrose concentration 3, 6, 9%, and aeration 0.1, 0.2, 0.4 vvm. After 4 weeks of cultivation, the growth indexes including the fresh and dry weight, and plant height were evaluated. At the same time, the consumption, pH, and EC of medium were estimated 4 weeks after incubating. The best results were achieved when 40 young shoots were incubated in a bioreactor in which 1 L of 1/2 strength MS medium supplemented with 6% sucrose was used for the rapid production of freesia shoots. The shoots were 17 cm in plant height and 1.0 g in fresh weight only 4 weeks after incubation which could be a good plant material suitable for corm enlargement in vitro. No correlation was observed between the growth of freesia shoots and the consumption, pH or EC of medium.

Effects of medium components on Mycelial Growth and Polysaccharide production in Liquid Culcure of Coriolus versicolor

  • Choi, Min-Gu;Hong, Eock-Kee
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XIII)
    • /
    • pp.253-257
    • /
    • 2003
  • 본 연구에서는 담자균류 중에 항암효과가 입증된 Coriolus versicolor의 균사체 생육과 다당체 생성에 유리한 배지를 선정하기 위하여 flask culture를 통하여 검토하였다. 임의의 배양조건 $27^{\circ}C$, 200rpm을 선택해 여러 탄소원과 질소원을 검토하여 각각 glucose와 yeast extract를 선택하였다.

  • PDF