• 제목/요약/키워드: Culture Collection

검색결과 888건 처리시간 0.023초

살라미 외피로부터 분리한 곰팡이의 동정 (Identification of Fungal Strains Isolated from Salami Casing)

  • 유영현;김대호;정구용;홍승범
    • 한국균학회지
    • /
    • 제42권1호
    • /
    • pp.74-78
    • /
    • 2014
  • 각종 육류를 세균, 곰팡이 등의 다양한 미생물로 발효시켜 만든 살라미는 서양인들에게는 치즈만큼이나 널리 애용되는 식품이다. 국내의 살라미 소비는 수입에 의존하였었는데, 최근에 국내산 육류를 이용하여 살라미를 제조하고자 하는 시도가 진행되고 있다. 살라미 제조 시의 곰팡이는 살라미 껍질에 주로 발생하여 내부의 육류가 세균에 의하여 안정되게 발효될 수 있도록 돕고, 살라미의 풍미에 영향을 미치는 것으로 알려져 있다. 우리나라에서 제조 중에 있는 살라미의 껍질을 실체현미경으로 관찰하고 주요곰팡이를 직접 분리하였으며, 형태적, 분자적 방법에 의하여 동정하였다. 이들은 Aspergillus cibarius S.B. Hong & R.A. Samson, Penicillium echinulatum Raper & Thom ex Fassat., Cladosporium sphaerospermum Penz.으로 동정되었는데, A. cibarius는 살라미 껍질에 흰색 또는 엷은 녹색으로 자라며 전체에 넓게 분포하였다. P. echinulatum은 살라미 껍질에 띄엄띄엄 발생하였으며 흰색의 덩어리를 형성하였다. C. sphaerospermum은 살라미 껍질에 드물게 발생하였으며 검은 반점을 형성하였다. 이들의 살라미 제조에서의 역할 및 살라미 제조에의 활용에 대한 추가적인 연구가 필요할 것으로 생각된다.

패션 이미지 특성에 따른 네크리스 코디네이션에 관한 연구 (The Study on the Necklace Coordination which is Classified by Fashion Image Characteristics)

  • 배정후;이경희
    • 복식문화연구
    • /
    • 제19권2호
    • /
    • pp.389-401
    • /
    • 2011
  • Jewelry is not only symbolic meaning of the fortune, but also it completes or redound to fashion style and its image in this modern times which diverse culture live together. The instinct for adornment which is long as human cultures is developed as Artwork genuinely to show effective self-expression that is aesthetic and distinguished. It would be from that it made by using metallic materials. In contemporary fashion, jewelry takes so much importance that it sets the trend. They carry a sensible message that expresses esthetic desire and originality. Among the so many kinds of jewelry, especially the necklace is located beneath the face and linked as a part of fashion, so it frequently has showed in Fashion Collection, We tend to study the effect of that the form, hue and character of materials of necklace that is expressed in fashion collection influence fashion image. The method of this study is comprised with precedent studies and analysis of necklace photos in fashion collection. For the analysis of data, we implement content analysis and statistical analysis using SPAW Statistics 18. As the result, fashion and jewelry effect interactively and share esthetic forms, in the view of total image necklace image is more strong than fashion image. Because the hue and the form of necklace take a great role to make fashion image with the sense of its eyesight, its effective coordination go up the delicate feelings of the fashion. So, it is very effective things that we predict the trend of fashion, then, coordinate with well-matched necklace.

Taxonomy of Yellow koji mold (Aspergillus flavus/oryzae) in Korea

  • Hong, Seung-Beom;Lee, Mina;Kim, Dae-Ho;Chung, Soo-Hyun;Samson, Robert A.
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2014년도 춘계학술대회 및 임시총회
    • /
    • pp.25-25
    • /
    • 2014
  • Koji molds are comprised of yellow, black and white. Black and white koji molds were recently re-visited by this author and it is concluded that they consists of Aspergillus luchuesnsis, A. niger and A. tubingensis, and the most important species for alcoholic beverage production is A. luchuensis. In the case of yellow koji mold, it is comprised of Aspergillus oryzae, A. sojae and A. tamari. In the case of A. sojae, the species is scarcely isolated from nature and rarely used for industry in Korea. Aspergillus tamari is often isolated from traditional Korean Meju, a fermented soybean product, and the classification of the species is clear. However, in the case of A. oryzae, differentiation between A. oryzae and A. flavus is still in controversy. In this study, we collected 415 strains of Aspergillus flavus/oryzae complex from air, rice straw, soybean, corn, peanut, arable soil and Meju in Korea and we examined the aflatoxin producing capacity of the strains. The norB-cypA, omtA and aflR genes in the aflatoxin biosynthesis gene cluster were analyzed. We found that 367 strains (88.4%) belonged to non-aflatoxigenic group (Type I of norB-cypA, IB-L-B-, IC-AO, or IA-L-B- of omtA, and AO type of aflR), and only 48 strains (11.6%) belonged to aflatoxin-producible group (Type II of norB-cypA, IC-L-B+/B- or IC-L-B+ of omtA, and AF type of aflR). In the case of A. flavus/oryzae strains from Meju, almost strains (178/192, 92.7%) belonged to non-aflatoxigenic group and only 14 strains (7.3 %) belonged to aflatoxin-producible group. It is proposed in this study that non-aflatoxigenic strain from Meju is classified as A. oryzae, considering that Meju is food material.

  • PDF

Characterization of Lactobacillus fermentum PL9988 Isolated from Healthy Elderly Korean in a Longevity Village

  • Park, Jong-Su;Shin, Eunju;Hong, Hyunjin;Shin, Hyun-Jung;Cho, Young-Hoon;Ahn, Ki-Hyun;Paek, Kyungsoo;Lee, Yeonhee
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권9호
    • /
    • pp.1510-1518
    • /
    • 2015
  • In this work, we wanted to develop a probiotic from famous longevity villages in Korea. We visited eight longevity villages in Korea to collect fecal samples from healthy adults who were aged above 80 years and had regular bowel movements, and isolated lactic-acid-producing bacteria from the samples. Isolated colonies that appeared on MRS agar containing bromophenol blue were identified by means of 16S rRNA sequencing, and 102 of the isolates were identified as lactic-acid-producing bacteria (18 species). Lactobacillus fermentum was the most frequently found species. Eight isolates were selected on the basis of their ability to inhibit the growth of six intestinal pathogens (Escherichia coli O157:H7, Salmonella enterica subsp. enterica Typhimurium, Salmonella enterica subsp. enterica Enteritidis, Enterococcus faecalis, Staphylococcus aureus, and Listeria monocytogenes) and their susceptibility to 15 antimicrobial agents. Among these eight isolates, four Lactobacillus fermentum isolates were found not to produce any harmful enzymes or metabolites. Among them, Lactobacillus fermentum isolate no. 24 showed the strongest binding to intestinal epithelial cells, the highest immune-enhancing activity, anti-inflammation activity, and anti-oxidation activity as well as the highest survival rates in the presence of artificial gastric juice and bile solution. This isolate, designated Lactobacillus fermentum PL9988, has all the characteristics for a good probiotic.

Contamination of Chicken Meat with Salmonella enterica Serovar Haardt with Nalidixic Acid Resistance and Reduced Fluoroquinolone Susceptibility

  • Lee, Ki-Eun;Lee, Min-Young;Lim, Ji-Youn;Jung, Ji-Hun;Park, Yong-Ho;Lee, Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권11호
    • /
    • pp.1853-1857
    • /
    • 2008
  • Salmonella contamination in chicken meat was studied with 100 chicken meat samples purchased from 55 shops located in various regions. A total of 21 isolates of Salmonella enterica were isolated from 21 chicken meat samples from four shops located at open markets, whereas there were none from supermarkets with well-equipped cold systems. Among these, 18 isolates were identified as Salmonella enterica serotype Haardt (S. Haardt) and three isolates were S. enterica serotype Muenchen. When the minimal inhibitory concentrations of the S. Haardt isolates were assayed with the agar dilution method to determine susceptibility to ampicillin, chloramphenicol, sulfisoxazole, tetracycline, and nalidixic acid, all 18 isolates were resistant to tetracycline and nalidixic acid and nine of these were resistant to ampicillin. These isolates showed reduced susceptibility to eight fluoroquinolones including ciprofloxacin, enrofloxacin, levofloxacin, gatifloxacin, gemifloxacin, moxifloxacin, norfloxacin, and ofloxacin. When quinolone resistance determining regions of gyrA and gyrB were sequenced, every isolate had the same missense mutation Ser83$\rightarrow$Tyr (TCC$\rightarrow$+TAC) in gyrA, whereas no mutation was found in gyrB. Pulsed-field gel electrophoresis with XbaI revealed a close relationship among these isolates, suggesting a contamination of raw chicken meat with clonal spread of nalidixic acid-resistant and quinolone-reduced susceptibility S. Haardt in chickens. Results in this study show the importance of a well-equipped cold system and the prudent use of fluoroquinolone in chickens to prevent the occurrence of quinolone-resistant isolates.

Effects of Collection Time, Culture Time and Activation Treatment of Canine Oocytes on the IVM Rates

  • Lee, B.K.;Kim, S.K.
    • 한국수정란이식학회지
    • /
    • 제22권4호
    • /
    • pp.219-222
    • /
    • 2007
  • These study was carried out to investigate the effects of the collection time, culture time and activation of canine oocytes on in vitro maturation rates. The activated oocytes were cultured in 10% FCS+TCM-199 media containing hormonal supplements (10 IU/ml HCG, 10 IU/ml PMSG, 10 ug/ml gonadotropin) at 5% $CO_2$, 95% air, $38^{\circ}C$. 1. IVM rate of in vitro cultured cumulus-attached oocytes recovered from ovaries that collected at follicular and luteal stages of the reproductive cycles were 11.4% and 5.7%, respectively. IVM rate of oocytes recovered from ovaries that collected at follicular stages of the reproductive cycles was significantly higher than that of luteal stage (p<0.05). 2. When IVM was carried out at different periods of 40, 48, and 70 hrs, the IVM rates of oocytes matured in vitro were 2.9%, 8.6%, 5.7%, respectively. These results indicate that the IVM time between $48{\sim}70$ hrs gives the highest maturation rate for the oocytes matured at the different stages. 3. IVM rate of oocytes matured in vitro for 10 hrs after single and combined activation treatment by ET, IP and CH and Ca+DMAP, CH+DMAP, ET+CH were $11.5{\pm}1.2%,\;10.8{\pm}1.0%,\;9.6{\pm}1.2%\;and\;12.4{\pm}1.5%,\;11.8{\pm}1.5%,\;11.2{\pm}1.4%$ respectively. This was higher than that in both single and combined stimulated groups compared to control group ($6.2{\sim}7.2%$).

Xylanolytic and Ethanologenic Potential of Gut Associated Yeasts from Different Species of Termites from India

  • Tiwari, Snigdha;Avchar, Rameshwar;Arora, Riya;Lanjekar, Vikram;Dhakephalkar, Prashant K.;Dagar, Sumit S.;Baghela, Abhishek
    • Mycobiology
    • /
    • 제48권6호
    • /
    • pp.501-511
    • /
    • 2020
  • Xylophagous termites are capable of degrading lignocellulose by symbiotic gut microorganisms along with the host's indigenous enzymes. Therefore, the termite gut might be a potential niche to obtain natural yeasts with celluloytic, xylanolytic and ethanologenic traits required for bioethanol production from lignocellulosic biomass. In this study, we cultured 79 yeasts from three different termites viz. Coptotermes heimi, Odontotermes javanicus and Odontotermes obesus. After suitable screening methods, we identified 53 yeasts, which belonged to 10 genera and 16 different species of both ascomycetous and basidiomycetous yeasts. Most yeasts in the present study represent their first-ever isolation from the termite gut. Representative strains of identified yeasts were evaluated for their cellulolytic, xylanolytic, and ethanologenic abilities. None of the isolates showed cellulase activity; 22 showed xylanolytic activity, while six produced substantial quantities of ethanol. Among xylanolytic cultures, Pseudozyma hubeiensis STAG 1.7 and Hannaella pagnoccae STAG 1.14 produced 1.31 and 1.17 IU of xylanase. Among ethanologenic yeasts, the strains belonging to genera Candida and Kodamaea produced high amount of ethanol. Overall, highest ethanol level of 4.42 g/L was produced by Candida tropicalis TS32 using 1% glucose, which increased up to 22.92 g/L at 35 ℃, pH 4.5 with 5% glucose. Fermentation of rice straw hydrolysate gave 8.95 g/l of ethanol with a yield of 0.42 g/g using the strain TS32. Our study highlights the gut of wood-feeding termites as a potential source of diverse yeasts that would be useful in the production of xylanase and bioethanol.

Antimicrobial Resistance of Seventy Lactic Acid Bacteria Isolated from Commercial Probiotics in Korea

  • Eunju Shin;Jennifer Jaemin Paek;Yeonhee Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권4호
    • /
    • pp.500-510
    • /
    • 2023
  • In this study, lactic acid bacteria were isolated from 21 top-selling probiotic products on Korean market and their antimicrobial resistance were analyzed. A total 152 strains were claimed to be contained in these products and 70 isolates belonging to three genera (Bifidobacterium, Lactobacillus, and Lactococcus) were obtained from these products. RAPD-PCR showed diversity among isolates of the same species except for two isolates of Lacticaibacillus rhamnosus from two different products. The agar dilution method and the broth dilution method produced different MICs for several antimicrobials. With the agar dilution method, five isolates (three isolates of Bifidobacterium animalis subsp. lactis, one isolate of B. breve, one isolate of B. longum) were susceptible to all nine antimicrobials and 15 isolates were multi-drug resistant. With the broth microdilution method, only two isolates (one isolate of B. breve and one isolate of B. longum) were susceptible while 16 isolates were multi-drug resistant. In this study, only two AMR genes were detected: 1) lnu(A) in one isolate of clindamycin-susceptible and lincomycin-resistant Limosilactobacillus reuteri; and 2) tet(W) in one tetracycline-susceptible isolate of B. longum B1-1 and two tetracycline-susceptible isolates and three tetracycline resistant isolates of B. animalis subsp. lactis. Transfer of these two genes via conjugation with a filter mating technique was not observed. These results suggest a need to monitor antimicrobial resistance in newly registered probiotics as well as probiotics with a long history of use.

Fungal Diversity of Rice Straw for Meju Fermentation

  • Kim, Dae-Ho;Kim, Seon-Hwa;Kwon, Soon-Wo;Lee, Jong-Kyu;Hong, Seung-Beom
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권12호
    • /
    • pp.1654-1663
    • /
    • 2013
  • Rice straw is closely associated with meju fermentation and it is generally known that the rice straw provides meju with many kinds of microorganisms. In order to elucidate the origin of meju fungi, the fungal diversity of rice straw was examined. Rice straw was collected from 12 Jang factories where meju are produced, and were incubated under nine different conditions by altering the media (MEA, DRBC, and DG18), and temperature ($15^{\circ}C$, $25^{\circ}C$, and $35^{\circ}C$). In total, 937 strains were isolated and identified as belonging to 39 genera and 103 species. Among these, Aspergillus, Cladosporium, Eurotium, Fusarium, and Penicillium were the dominant genera. Fusarium asiaticum (56.3%), Cladosporium cladosporioides (48.6%), Aspergillus tubingensis (37.5%), A. oryzae (31.9%), Eurotium repens (27.1%), and E. chevalieri (25.0%) were frequently isolated from the rice straw obtained from many factories. Twelve genera and 40 species of fungi that were isolated in the rice straw in this study were also isolated from meju. Specifically, A. oryzae, C. cladosporioides, E. chevalieri, E. repens, F. asiaticum, and Penicillium polonicum (11.8%), which are abundant species in meju, were also isolated frequently from rice straw. C. cladosporioides, F. asiaticum, and P. polonicum, which are abundant in the low temperature fermentation process of meju fermentation, were frequently isolated from rice straw incubated at $15^{\circ}C$ and $25^{\circ}C$, whereas A. oryzae, E. repens, and E. chevalieri, which are abundant in the high temperature fermentation process of meju fermentation, were frequently isolated from rice straw incubated at $25^{\circ}C$ and $35^{\circ}C$. This suggests that the mycobiota of rice straw has a large influence in the mycobiota of meju. The influence of fungi on the rice straw as feed and silage for livestock, and as plant pathogens for rice, are discussed as well.

The Mycobiota of Air Inside and Outside the Meju Fermentation Room and the Origin of Meju Fungi

  • Kim, Dae-Ho;Kim, Sun-Hwa;Kwon, Soon-wo;Lee, Jong-Kyu;Hong, Seung-Beom
    • Mycobiology
    • /
    • 제43권3호
    • /
    • pp.258-265
    • /
    • 2015
  • The fungi on Meju are known to play an important role as degrader of macromolecule of soybeans. In order to elucidate the origin of fungi on traditional Meju, mycobiota of the air both inside and outside traditional Meju fermentation rooms was examined. From 11 samples of air collected from inside and outside of 7 Meju fermentation rooms, 37 genera and 90 species of fungi were identified. In outside air of the fermentation room, Cladosporium sp. and Cladosporium cladosporioides were the dominant species, followed by Cladosporium tenuissimum, Eurotium sp., Phoma sp., Sistotrema brinkmannii, Alternaria sp., Aspergillus fumigatus, Schizophyllum commune, and Penicillium glabrum. In inside air of the fermentation room, Cladosporium sp., Aspergillus oryzae, Penicillium chrysogenum, Asp. nidulans, Aspergillus sp., Cla. cladosporioides, Eurotium sp., Penicillium sp., Cla. tenuissimum, Asp. niger, Eur. herbariorum, Asp. sydowii, and Eur. repens were collected with high frequency. The concentrations of the genera Aspergillus, Eurotium, and Penicillium were significantly higher in inside air than outside air. From this result and those of previous reports, the origin of fungi present on Meju was inferred. Of the dominant fungal species present on Meju, Lichtheimia ramosa, Mucor circinelloides, Mucor racemosus, and Scopulariopsis brevicaulis are thought to be originated from outside air, because these species are not or are rarely isolated from rice straw and soybean; however, they were detected outside air of fermentation room and are species commonly found in indoor environments. However, Asp. oryzae, Pen. polonicum, Eur. repens, Pen. solitum, and Eur. chevalieri, which are frequently found on Meju, are common in rice straw and could be transferred from rice straw to Meju. The fungi grow and produce abundant spores during Meju fermentation, and after the spores accumulate in the air of fermentation room, they could influence mycobiota of Meju fermentation in the following year. This could explain why concentrations of the genera Aspergillus, Eurotium, and Penicillium are much higher inside than outside of the fermentation rooms.