Acknowledgement
This work was supported by a grant (NRF-2018R1D1A1B07047284) of the National Research Foundation (NRF) funded by the Ministry of Science and ICT (MSIT), Republic of Korea.
References
- EFSA. 2020. Scientific opinion on the u-pdate of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA (2017-2019). EFSA J. 18: 5966.
- Campedelli I, Mathur H, Salvetti E, Clarke S, Rea MC, Torriani S, et al. 2019. Genus-wide assessment of antibiotic resistance in lactobacillus spp. Appl. Environ. Microbiol. 85: e01738-18.
- Fraqueza MJ. 2015. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. Int. J. Food Microbiol. 212: 76-88. https://doi.org/10.1016/j.ijfoodmicro.2015.04.035
- D'Aimmo, MR, Modesto M, Biavati B. 2007. Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products. Int. J. Food Microbiol. 115: 35-42. https://doi.org/10.1016/j.ijfoodmicro.2006.10.003
- Devirgiliis C, Barile S, Perozzi G. 2011. Antibiotic resistance determinants in the interplay between food and gut microbiota. Genes Nutr. 6: 275-284. https://doi.org/10.1007/s12263-011-0226-x
- Huys, G, D'Haene, K, Swings, J. 2006. Genetic basis of tetracycline and minocycline resistance in potentially probiotic Lactobacillus plantarum strain CCUG 43738. Antimicrob. Agents Chemother. 50: 1550-1551. https://doi.org/10.1128/AAC.50.4.1550-1551.2006
- Schjorring S, Krogfelt KA. 2011. Assessment of bacterial antibiotic resistance transfer in the gut. Int. J. Microbiol. 3: 12956.
- Teuber M, Meile L, Schwarz F. 1999. Acquired antibiotic resistance in lactic acid bacteria from food. pp. 115-137. In: Lactic acid bacteria: Genetics, metabolism and applications. Springer, Dordrecht.
- Thumu SC, Halami PM. 2012. Presence of erythromycin and tetracycline resistance genes in lactic acid bacteria from fermented foods of Indian origin. Antonie Leeuwenhoek 102: 541-551. https://doi.org/10.1007/s10482-012-9749-4
- Park JS, Shin E, Hong H, Shin HJ, Cho YH, Ahn KH, et al. 2015. Characterization of Lactobacillus fermentum PL9988 isolated from healthy elderly Korean in a longevity village. J. Microbiol. Biotechnol. 25, 1510-1518. https://doi.org/10.4014/jmb.1505.05015
- Rozman V, Lorbeg PM, Accetto T, Matijasic BB. 2020. Characterization of antimicrobial resistance in lactobacilli and bifidobacteria used as probiotics or starter cultures based on integration of phenotypic and in silico data. Int. J. Food Microbiol. 314: 108388.
- EFSA. 2018. Guidance on the characterization of microorganisms used as feed additives or as production organisms. EFSA J. 16: 5206.
- Lee HM, Lee Y. 2008. A differential medium for lactic acid-producing bacteria in a mixed culture. Lett. Appl. Microbiol. 46: 676-681. https://doi.org/10.1111/j.1472-765X.2008.02371.x
- Beerens H. 1990. An elective and selective isolation medium for Bifidobacterium ssp. Lett. Appl. Microbiol. 11: 155-158. https://doi.org/10.1111/j.1472-765X.1990.tb00148.x
- Lane DJ. 1991. 16S/23S rRNA sequencing. In Stackebrandt, E. & Goodfellow, M (Eds.), pp. 115-175. Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons. Chichester.
- ISO 10932. 2010.Milk and milk products - Determination of the minimal inhibitory concentration (MIC) of antibiotics applicable to bifidobacteria and non-enterococcal LAB.
- Klare I, Konstabel C, Werner G, Huys G, Vankerckhoven V, Kahlmeter G. et al. 2007. Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J. Antimicrob. Chemother. 59: 900-912. https://doi.org/10.1093/jac/dkm035
- Perreten V, Vorlet-Fawer L, Slickers P, Ehricht R, Kuhnert P, Frey J. 2005. Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. J. Clin. Microbiol. 43: 2291-2302. https://doi.org/10.1128/JCM.43.5.2291-2302.2005
- Hummel AS, Hertel C, Holzapfel WH, Franz CM. 2007. Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl. Environ. Microbiol. 73: 730-739. https://doi.org/10.1128/AEM.02105-06
- Strommenger B, Kettlitz C, Werner G, Witte W. 2003. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J. Clin. Microbiol. 41: 4089-4094. https://doi.org/10.1128/JCM.41.9.4089-4094.2003
- Lina G, Quaglia A, Reverdy ME, Leclercq R, Vandenesch F, Etienne J. 1999. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob. Agents Chemother. 4: 1062-1066.
- Werner G, Willems RJ, Hildebrandt B, Klare I, Witte W. 2003. Influence of transferable genetic determinants on the outcome of typing methods commonly used for Enterococcus faecium. J. Clin. Microbiol. 41: 1499-1506. https://doi.org/10.1128/JCM.41.4.1499-1506.2003
- Aminov RI, Garrigues-Jeanjean N, Mackie RI. 2001. Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl. Environ. Microbiol. 67: 22-32. https://doi.org/10.1128/AEM.67.1.22-32.2001
- Gevers D, Danielsen M, Huys G, Swings J. 2003. Molecular characterization of tet (M) genes in lactobacillus isolates from different types of fermented dry sausage. Appl. Environ. Microbiol. 69: 1270-1275. https://doi.org/10.1128/AEM.69.2.1270-1275.2003
- Charpentier E, Gerbaud G, Courvalin P. 1993. Characterization of a new class of tetracycline-resistance gene tet (S) in Listeria monocytogenes BM4210. Gene 131: 27-34. https://doi.org/10.1016/0378-1119(93)90665-P
- Clermont D, Chesneau O, De Cespedes G, Horaud T. 1997. New tetracycline resistance determinants coding for ribosomal protection in streptococci and nucleotide sequence of tet (T) isolated from Streptococcus pyogenes A498. Antimicrob. Agents Chemother. 41: 112-116. https://doi.org/10.1128/AAC.41.1.112
- Kern CC, Vogel RF, Behr J. 2014. Differentiation of Lactobacillus brevis strains using Matrix-assisted-laser-desorption-ionization-time-of-flight mass spectrometry with respect to their beer spoilage potential. Food Microbiol. 40: 18-24. https://doi.org/10.1016/j.fm.2013.11.015
- Alvarez-Cisneros YM, Ponce-Alquicira E. 2018. Antibiotic resistance in lactic acid bacteria. In Antimicrobial Resistance-A Global Threat, Intech Open.
- Mayrhofer S, Van Hoek AH, Mair C, Huys G, Aarts HJ, Kneifel W, et al. 2010. Antibiotic susceptibility of members of the Lactobacillus acidophilus group using broth microdilution and molecular identification of their resistance determinants. Int. J. Food Microbiol. 144: 81-87. https://doi.org/10.1016/j.ijfoodmicro.2010.08.024
- Florez AB, Vazquez L, Mayo B. 2017. A functional metagenomic analysis of tetracycline resistance in cheese bacteria. Front. Microbiol. 8: 907-919. https://doi.org/10.3389/fmicb.2017.00907
- Anisimova EA, Yarullina DR. 2019. Antibiotic resistance of Lactobacillus strains. Curr. Microbiol. 76: 1407-1416. https://doi.org/10.1007/s00284-019-01769-7
- Ma Q, Pei Z, Fang Z, Wang H, Zhu J, Lee YK, et al. 2021. Evaluation of tetracycline resistance and determination of the tentative microbiological cutoff values in lactic acid bacterial species. Microorganisms 9: 2128.
- Ammor MS, Florez AB, Van Hoek AH, Clara G, Aarts HJ, Margolles A, et al. 2008. Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. J. Mol. Microbiol. Biotechnol. 14: 6-15. https://doi.org/10.1159/000106077
- Mathur S, Singh R. 2005. Antibiotic resistance in food lactic acid bacteria-a Alvarez-Cisneros, review. Int. J. Food Microbiol. 105: 281-295. https://doi.org/10.1016/j.ijfoodmicro.2005.03.008
- Partridge SR, Kwong SM, Firth N, Jensen SO. 2018. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31: e00088-17.