DOI QR코드

DOI QR Code

Antimicrobial Resistance of Seventy Lactic Acid Bacteria Isolated from Commercial Probiotics in Korea

  • Eunju Shin (Culture Collection of Antimicrobial Resistant Microbes, Department of Horticulture, Biotechnology, and Landscape Architecture, Seoul Women's University) ;
  • Jennifer Jaemin Paek (Culture Collection of Antimicrobial Resistant Microbes, Department of Horticulture, Biotechnology, and Landscape Architecture, Seoul Women's University) ;
  • Yeonhee Lee (Culture Collection of Antimicrobial Resistant Microbes, Department of Horticulture, Biotechnology, and Landscape Architecture, Seoul Women's University)
  • Received : 2022.10.25
  • Accepted : 2023.01.03
  • Published : 2023.04.28

Abstract

In this study, lactic acid bacteria were isolated from 21 top-selling probiotic products on Korean market and their antimicrobial resistance were analyzed. A total 152 strains were claimed to be contained in these products and 70 isolates belonging to three genera (Bifidobacterium, Lactobacillus, and Lactococcus) were obtained from these products. RAPD-PCR showed diversity among isolates of the same species except for two isolates of Lacticaibacillus rhamnosus from two different products. The agar dilution method and the broth dilution method produced different MICs for several antimicrobials. With the agar dilution method, five isolates (three isolates of Bifidobacterium animalis subsp. lactis, one isolate of B. breve, one isolate of B. longum) were susceptible to all nine antimicrobials and 15 isolates were multi-drug resistant. With the broth microdilution method, only two isolates (one isolate of B. breve and one isolate of B. longum) were susceptible while 16 isolates were multi-drug resistant. In this study, only two AMR genes were detected: 1) lnu(A) in one isolate of clindamycin-susceptible and lincomycin-resistant Limosilactobacillus reuteri; and 2) tet(W) in one tetracycline-susceptible isolate of B. longum B1-1 and two tetracycline-susceptible isolates and three tetracycline resistant isolates of B. animalis subsp. lactis. Transfer of these two genes via conjugation with a filter mating technique was not observed. These results suggest a need to monitor antimicrobial resistance in newly registered probiotics as well as probiotics with a long history of use.

Keywords

Acknowledgement

This work was supported by a grant (NRF-2018R1D1A1B07047284) of the National Research Foundation (NRF) funded by the Ministry of Science and ICT (MSIT), Republic of Korea.

References

  1. EFSA. 2020. Scientific opinion on the u-pdate of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA (2017-2019). EFSA J. 18: 5966.
  2. Campedelli I, Mathur H, Salvetti E, Clarke S, Rea MC, Torriani S, et al. 2019. Genus-wide assessment of antibiotic resistance in lactobacillus spp. Appl. Environ. Microbiol. 85: e01738-18.
  3. Fraqueza MJ. 2015. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. Int. J. Food Microbiol. 212: 76-88. https://doi.org/10.1016/j.ijfoodmicro.2015.04.035
  4. D'Aimmo, MR, Modesto M, Biavati B. 2007. Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products. Int. J. Food Microbiol. 115: 35-42. https://doi.org/10.1016/j.ijfoodmicro.2006.10.003
  5. Devirgiliis C, Barile S, Perozzi G. 2011. Antibiotic resistance determinants in the interplay between food and gut microbiota. Genes Nutr. 6: 275-284. https://doi.org/10.1007/s12263-011-0226-x
  6. Huys, G, D'Haene, K, Swings, J. 2006. Genetic basis of tetracycline and minocycline resistance in potentially probiotic Lactobacillus plantarum strain CCUG 43738. Antimicrob. Agents Chemother. 50: 1550-1551. https://doi.org/10.1128/AAC.50.4.1550-1551.2006
  7. Schjorring S, Krogfelt KA. 2011. Assessment of bacterial antibiotic resistance transfer in the gut. Int. J. Microbiol. 3: 12956.
  8. Teuber M, Meile L, Schwarz F. 1999. Acquired antibiotic resistance in lactic acid bacteria from food. pp. 115-137. In: Lactic acid bacteria: Genetics, metabolism and applications. Springer, Dordrecht.
  9. Thumu SC, Halami PM. 2012. Presence of erythromycin and tetracycline resistance genes in lactic acid bacteria from fermented foods of Indian origin. Antonie Leeuwenhoek 102: 541-551. https://doi.org/10.1007/s10482-012-9749-4
  10. Park JS, Shin E, Hong H, Shin HJ, Cho YH, Ahn KH, et al. 2015. Characterization of Lactobacillus fermentum PL9988 isolated from healthy elderly Korean in a longevity village. J. Microbiol. Biotechnol. 25, 1510-1518. https://doi.org/10.4014/jmb.1505.05015
  11. Rozman V, Lorbeg PM, Accetto T, Matijasic BB. 2020. Characterization of antimicrobial resistance in lactobacilli and bifidobacteria used as probiotics or starter cultures based on integration of phenotypic and in silico data. Int. J. Food Microbiol. 314: 108388.
  12. EFSA. 2018. Guidance on the characterization of microorganisms used as feed additives or as production organisms. EFSA J. 16: 5206.
  13. Lee HM, Lee Y. 2008. A differential medium for lactic acid-producing bacteria in a mixed culture. Lett. Appl. Microbiol. 46: 676-681. https://doi.org/10.1111/j.1472-765X.2008.02371.x
  14. Beerens H. 1990. An elective and selective isolation medium for Bifidobacterium ssp. Lett. Appl. Microbiol. 11: 155-158. https://doi.org/10.1111/j.1472-765X.1990.tb00148.x
  15. Lane DJ. 1991. 16S/23S rRNA sequencing. In Stackebrandt, E. & Goodfellow, M (Eds.), pp. 115-175. Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons. Chichester.
  16. ISO 10932. 2010.Milk and milk products - Determination of the minimal inhibitory concentration (MIC) of antibiotics applicable to bifidobacteria and non-enterococcal LAB.
  17. Klare I, Konstabel C, Werner G, Huys G, Vankerckhoven V, Kahlmeter G. et al. 2007. Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J. Antimicrob. Chemother. 59: 900-912. https://doi.org/10.1093/jac/dkm035
  18. Perreten V, Vorlet-Fawer L, Slickers P, Ehricht R, Kuhnert P, Frey J. 2005. Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. J. Clin. Microbiol. 43: 2291-2302. https://doi.org/10.1128/JCM.43.5.2291-2302.2005
  19. Hummel AS, Hertel C, Holzapfel WH, Franz CM. 2007. Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl. Environ. Microbiol. 73: 730-739. https://doi.org/10.1128/AEM.02105-06
  20. Strommenger B, Kettlitz C, Werner G, Witte W. 2003. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J. Clin. Microbiol. 41: 4089-4094. https://doi.org/10.1128/JCM.41.9.4089-4094.2003
  21. Lina G, Quaglia A, Reverdy ME, Leclercq R, Vandenesch F, Etienne J. 1999. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob. Agents Chemother. 4: 1062-1066.
  22. Werner G, Willems RJ, Hildebrandt B, Klare I, Witte W. 2003. Influence of transferable genetic determinants on the outcome of typing methods commonly used for Enterococcus faecium. J. Clin. Microbiol. 41: 1499-1506. https://doi.org/10.1128/JCM.41.4.1499-1506.2003
  23. Aminov RI, Garrigues-Jeanjean N, Mackie RI. 2001. Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl. Environ. Microbiol. 67: 22-32. https://doi.org/10.1128/AEM.67.1.22-32.2001
  24. Gevers D, Danielsen M, Huys G, Swings J. 2003. Molecular characterization of tet (M) genes in lactobacillus isolates from different types of fermented dry sausage. Appl. Environ. Microbiol. 69: 1270-1275. https://doi.org/10.1128/AEM.69.2.1270-1275.2003
  25. Charpentier E, Gerbaud G, Courvalin P. 1993. Characterization of a new class of tetracycline-resistance gene tet (S) in Listeria monocytogenes BM4210. Gene 131: 27-34. https://doi.org/10.1016/0378-1119(93)90665-P
  26. Clermont D, Chesneau O, De Cespedes G, Horaud T. 1997. New tetracycline resistance determinants coding for ribosomal protection in streptococci and nucleotide sequence of tet (T) isolated from Streptococcus pyogenes A498. Antimicrob. Agents Chemother. 41: 112-116. https://doi.org/10.1128/AAC.41.1.112
  27. Kern CC, Vogel RF, Behr J. 2014. Differentiation of Lactobacillus brevis strains using Matrix-assisted-laser-desorption-ionization-time-of-flight mass spectrometry with respect to their beer spoilage potential. Food Microbiol. 40: 18-24. https://doi.org/10.1016/j.fm.2013.11.015
  28. Alvarez-Cisneros YM, Ponce-Alquicira E. 2018. Antibiotic resistance in lactic acid bacteria. In Antimicrobial Resistance-A Global Threat, Intech Open.
  29. Mayrhofer S, Van Hoek AH, Mair C, Huys G, Aarts HJ, Kneifel W, et al. 2010. Antibiotic susceptibility of members of the Lactobacillus acidophilus group using broth microdilution and molecular identification of their resistance determinants. Int. J. Food Microbiol. 144: 81-87. https://doi.org/10.1016/j.ijfoodmicro.2010.08.024
  30. Florez AB, Vazquez L, Mayo B. 2017. A functional metagenomic analysis of tetracycline resistance in cheese bacteria. Front. Microbiol. 8: 907-919. https://doi.org/10.3389/fmicb.2017.00907
  31. Anisimova EA, Yarullina DR. 2019. Antibiotic resistance of Lactobacillus strains. Curr. Microbiol. 76: 1407-1416. https://doi.org/10.1007/s00284-019-01769-7
  32. Ma Q, Pei Z, Fang Z, Wang H, Zhu J, Lee YK, et al. 2021. Evaluation of tetracycline resistance and determination of the tentative microbiological cutoff values in lactic acid bacterial species. Microorganisms 9: 2128.
  33. Ammor MS, Florez AB, Van Hoek AH, Clara G, Aarts HJ, Margolles A, et al. 2008. Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. J. Mol. Microbiol. Biotechnol. 14: 6-15. https://doi.org/10.1159/000106077
  34. Mathur S, Singh R. 2005. Antibiotic resistance in food lactic acid bacteria-a Alvarez-Cisneros, review. Int. J. Food Microbiol. 105: 281-295. https://doi.org/10.1016/j.ijfoodmicro.2005.03.008
  35. Partridge SR, Kwong SM, Firth N, Jensen SO. 2018. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31: e00088-17.