• Title/Summary/Keyword: Cultural Intelligence

Search Result 150, Processing Time 0.027 seconds

Development of Deep Learning Model for Detecting Road Cracks Based on Drone Image Data (드론 촬영 이미지 데이터를 기반으로 한 도로 균열 탐지 딥러닝 모델 개발)

  • Young-Ju Kwon;Sung-ho Mun
    • Land and Housing Review
    • /
    • v.14 no.2
    • /
    • pp.125-135
    • /
    • 2023
  • Drones are used in various fields, including land survey, transportation, forestry/agriculture, marine, environment, disaster prevention, water resources, cultural assets, and construction, as their industrial importance and market size have increased. In this study, image data for deep learning was collected using a mavic3 drone capturing images at a shooting altitude was 20 m with ×7 magnification. Swin Transformer and UperNet were employed as the backbone and architecture of the deep learning model. About 800 sheets of labeled data were augmented to increase the amount of data. The learning process encompassed three rounds. The Cross-Entropy loss function was used in the first and second learning; the Tversky loss function was used in the third learning. In the future, when the crack detection model is advanced through convergence with the Internet of Things (IoT) through additional research, it will be possible to detect patching or potholes. In addition, it is expected that real-time detection tasks of drones can quickly secure the detection of pavement maintenance sections.

How do people verify identity in the Metaverse: Through exploring the user's avatar (메타버스 내 아바타 정체성 확인에 영향을 미치는 요인에 관한 연구)

  • Kihyun Kim;Seongwon Lee;Kil-Soo Suh
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.189-217
    • /
    • 2023
  • The metaverse is a virtual world where individuals engage in social, economic, and cultural activities using avatars, which represent an alternate version of oneself within the virtual realm. While the metaverse has garnered global attention recently, research exploring the identity manifested through avatars within the metaverse remains limited. This study investigates the influence of four IT artifact characteristics related to avatar usage in the metaverse-avatar representation, avatar copresence, avatar profiling, and avatar-space interaction-on perceived avatar identity verification. A survey was conducted with 196 experienced users of the Zepeto platform, and hypotheses were tested using structural equation modeling. The analysis results indicate that the use of IT artifacts enabling avatar representation, avatar copresence, and avatar-space interaction has a positive impact on perceived avatar identity verification. This achieved self-verification indirectly influences the satisfaction and subsequent intention to continue using the metaverse. This study contributes to the academic field by empirically verifying the metaverse technological factors that influence the projected identity onto avatars within the metaverse. Furthermore, it is expected to provide effective guidelines for metaverse platform companies in designing and implementing the metaverse.

With Corona Era, exploring policy measures to prevent non-face-to-face lonely deaths - Focusing on Daegu Metropolitan City's AI and IOT cases of lonely death prevention (With 코로나 시대 비대면 고독사 예방정책 방안 모색 - 대구광역시 AI, IOT 고독사 예방 사례를 중심으로)

  • Ha-Yoon Kim;Tai-Hyun Ha
    • Journal of Digital Convergence
    • /
    • v.21 no.3
    • /
    • pp.49-62
    • /
    • 2023
  • Due to social and cultural changes and the growth of aging people living as a single because of aging, lonely deaths are steadily increasing, and each local government has begun to define them as a social problem. The legal basis began to be established. In order to explore policy measures to prevent lonely deaths, this study examined cases of lonely death prevention policies using smart digital information technology (AI, IOT), which is being promoted by Daegu Metropolitan City to promote non-face-to-face policies to prevent lonely deaths. Policies related to lonely deaths are divided into two axes: lonely death prevention projects and post-excavation support projects. In order to operate these businesses efficiently, the provision of non-face-to-face services through artificial intelligence and the Internet of Things is recognized as a new service delivery system, so the importance and necessity of non-face-to-face services is increasing. It is time that multifaceted changes and preparations are needed, such as establishing a system to expand the non-face-to-face industry at the national level. In order to respond to another national disaster situation in the future, the non-face-to-face smart care system is being expanded in various welfare policies such as preventing lonely deaths. It will have to be activated.

The Design of Smart-phone Application Design for Intelligent Personalized Service in Exhibition Space (전시 공간에서 지능형 개인화 서비스를 위한 스마트 폰 어플리케이션 설계)

  • Cho, Young-Hee;Choi, Ae-Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.2
    • /
    • pp.109-117
    • /
    • 2011
  • The exhibition industry, as technology-intensive, eco-friendly industry, contributes to regional and national development and enhancement of its image as well, if it joins cultural and tourist industry. Therefore, We need to revitalize the exhibition industry, as actively holding an exhibition event. However, to attract a number of exhibition audience, the work of enhancing audience satisfaction and awareness of value for participation should be prioritized after improving quality of service within exhibition hall. As one way to enhance the quality of service, it is thought that the way providing personalized service geared toward each audience is needed. that is, if audience avoids the complexity in exhibition space and it affords them service to enable effective time and space management, it will improve the satisfaction. All such personalized service affordable lets the audience's preference on the basis of each audience profile registered in advance online grasp. and Based on this information, it is provided with exhibition-related information suited their purpose that is the booth for the interesting audience, the shortest path to go to the booth and event via audience's smart phone. and it collects audience's reaction information, such as visiting the booth, participating the event through offered the information in this way and location information for the flow of movement, the present position so that it makes revision of existing each audience profile. After correcting the information, it extracts the individual's preference. hereunder, it provides recommend booth and event information. in other words, it provides optimal information for individual by amendment based on reaction information about recommending information built on basic profile. It provides personalized service dynamic and interactive with audience. This paper will be able to provide the most suitable information for each audience through circular and interactive structure and designed smart-phone application supportable for updating dynamic and interactive personalized service that is able to afford surrounding information in real time, as locating movement position through sensing. The proposed application collects user‘s context information and carrys information gathering function collecting the reaction about searched or provided information via sensing. and it also carrys information gathering function providing needed data for user in exhibition hall. In other words, it offers information about recommend booth of position foundation for user, location-based services of recommend booth and involves service providing detailed information for inside exhibition by using service of augmented reality, the map of whole exhibition as well. and it is also provided with SNS service that is able to keep information exchange besides intimacy. To provide this service, application is consisted of several module. first of all, it includes UNS identity module for sensing, and contain sensor information gathering module handling and collecting the perceived information through this module. Sensor information gathered like this transmits the information gathering server. and there is exhibition information interfacing with user and this module transmits to interesting information collection module through user's reaction besides interface. Interesting information collection module transmits collected information and If valid information out of the information gathering server that brings together sensing information and interesting information is sent to recommend server, the recommend server makes recommend information through inference with gathered valid information. If this server transmit by exhibition information process, exhibition information process module is provided with user by interface. Through this system it raises the dynamic, intelligent personalized service for user.

Autopoietic Machinery and the Emergence of Third-Order Cybernetics (자기생산 기계 시스템과 3차 사이버네틱스의 등장)

  • Lee, Sungbum
    • Cross-Cultural Studies
    • /
    • v.52
    • /
    • pp.277-312
    • /
    • 2018
  • First-order cybernetics during the 1940s and 1950s aimed for control of an observed system, while second-order cybernetics during the mid-1970s aspired to address the mechanism of an observing system. The former pursues an objective, subjectless, approach to a system, whereas the latter prefers a subjective, personal approach to a system. Second-order observation must be noted since a human observer is a living system that has its unique cognition. Maturana and Varela place the autopoiesis of this biological system at the core of second-order cybernetics. They contend that an autpoietic system maintains, transforms and produces itself. Technoscientific recreation of biological autopoiesis opens up to a new step in cybernetics: what I describe as third-order cybernetics. The formation of technoscientific autopoiesis overlaps with the Fourth Industrial Revolution or what Erik Brynjolfsson and Andrew McAfee call the Second Machine Age. It leads to a radical shift from human centrism to posthumanity whereby humanity is mechanized, and machinery is biologized. In two versions of the novel Demon Seed, American novelist Dean Koontz explores the significance of technoscientific autopoiesis. The 1973 version dramatizes two kinds of observers: the technophobic human observer and the technology-friendly machine observer Proteus. As the story concludes, the former dominates the latter with the result that an anthropocentric position still works. The 1997 version, however, reveals the victory of the techno-friendly narrator Proteus over the anthropocentric narrator. Losing his narrational position, the technophobic human narrator of the story disappears. In the 1997 version, Proteus becomes the subject of desire in luring divorcee Susan. He longs to flaunt his male egomaniac. His achievement of male identity is a sign of technological autopoiesis characteristic of third-order cybernetics. To display self-producing capabilities integral to the autonomy of machinery, Koontz's novel demonstrates that Proteus manipulates Susan's egg to produce a human-machine mixture. Koontz's demon child, problematically enough, implicates the future of eugenics in an era of technological autopoiesis. Proteus creates a crossbreed of humanity and machinery to engineer a perfect body and mind. He fixes incurable or intractable diseases through genetic modifications. Proteus transfers a vast amount of digital information to his offspring's brain, which enables the demon child to achieve state-of-the-art intelligence. His technological editing of human genes and consciousness leads to digital standardization through unanimous spread of the best qualities of humanity. He gathers distinguished human genes and mental status much like collecting luxury brands. Accordingly, Proteus's child-making project ultimately moves towards technologically-controlled eugenics. Pointedly, it disturbs the classical ideal of liberal humanism celebrating a human being as the master of his or her nature.

Application of Deep Learning for Classification of Ancient Korean Roof-end Tile Images (딥러닝을 활용한 고대 수막새 이미지 분류 검토)

  • KIM Younghyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.3
    • /
    • pp.24-35
    • /
    • 2024
  • Recently, research using deep learning technologies such as artificial intelligence, convolutional neural networks, etc. has been actively conducted in various fields including healthcare, manufacturing, autonomous driving, and security, and is having a significant influence on society. In line with this trend, the present study attempted to apply deep learning to the classification of archaeological artifacts, specifically ancient Korean roof-end tiles. Using 100 images of roof-end tiles from each of the Goguryeo, Baekje, and Silla dynasties, for a total of 300 base images, a dataset was formed and expanded to 1,200 images using data augmentation techniques. After building a model using transfer learning from the pre-trained EfficientNetB0 model and conducting five-fold cross-validation, an average training accuracy of 98.06% and validation accuracy of 97.08% were achieved. Furthermore, when model performance was evaluated with a test dataset of 240 images, it could classify the roof-end tile images from the three dynasties with a minimum accuracy of 91%. In particular, with a learning rate of 0.0001, the model exhibited the highest performance, with accuracy of 92.92%, precision of 92.96%, recall of 92.92%, and F1 score of 92.93%. This optimal result was obtained by preventing overfitting and underfitting issues using various learning rate settings and finding the optimal hyperparameters. The study's findings confirm the potential for applying deep learning technologies to the classification of Korean archaeological materials, which is significant. Additionally, it was confirmed that the existing ImageNet dataset and parameters could be positively applied to the analysis of archaeological data. This approach could lead to the creation of various models for future archaeological database accumulation, the use of artifacts in museums, and classification and organization of artifacts.

Suggestion of Urban Regeneration Type Recommendation System Based on Local Characteristics Using Text Mining (텍스트 마이닝을 활용한 지역 특성 기반 도시재생 유형 추천 시스템 제안)

  • Kim, Ikjun;Lee, Junho;Kim, Hyomin;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.149-169
    • /
    • 2020
  • "The Urban Renewal New Deal project", one of the government's major national projects, is about developing underdeveloped areas by investing 50 trillion won in 100 locations on the first year and 500 over the next four years. This project is drawing keen attention from the media and local governments. However, the project model which fails to reflect the original characteristics of the area as it divides project area into five categories: "Our Neighborhood Restoration, Housing Maintenance Support Type, General Neighborhood Type, Central Urban Type, and Economic Base Type," According to keywords for successful urban regeneration in Korea, "resident participation," "regional specialization," "ministerial cooperation" and "public-private cooperation", when local governments propose urban regeneration projects to the government, they can see that it is most important to accurately understand the characteristics of the city and push ahead with the projects in a way that suits the characteristics of the city with the help of local residents and private companies. In addition, considering the gentrification problem, which is one of the side effects of urban regeneration projects, it is important to select and implement urban regeneration types suitable for the characteristics of the area. In order to supplement the limitations of the 'Urban Regeneration New Deal Project' methodology, this study aims to propose a system that recommends urban regeneration types suitable for urban regeneration sites by utilizing various machine learning algorithms, referring to the urban regeneration types of the '2025 Seoul Metropolitan Government Urban Regeneration Strategy Plan' promoted based on regional characteristics. There are four types of urban regeneration in Seoul: "Low-use Low-Level Development, Abandonment, Deteriorated Housing, and Specialization of Historical and Cultural Resources" (Shon and Park, 2017). In order to identify regional characteristics, approximately 100,000 text data were collected for 22 regions where the project was carried out for a total of four types of urban regeneration. Using the collected data, we drew key keywords for each region according to the type of urban regeneration and conducted topic modeling to explore whether there were differences between types. As a result, it was confirmed that a number of topics related to real estate and economy appeared in old residential areas, and in the case of declining and underdeveloped areas, topics reflecting the characteristics of areas where industrial activities were active in the past appeared. In the case of the historical and cultural resource area, since it is an area that contains traces of the past, many keywords related to the government appeared. Therefore, it was possible to confirm political topics and cultural topics resulting from various events. Finally, in the case of low-use and under-developed areas, many topics on real estate and accessibility are emerging, so accessibility is good. It mainly had the characteristics of a region where development is planned or is likely to be developed. Furthermore, a model was implemented that proposes urban regeneration types tailored to regional characteristics for regions other than Seoul. Machine learning technology was used to implement the model, and training data and test data were randomly extracted at an 8:2 ratio and used. In order to compare the performance between various models, the input variables are set in two ways: Count Vector and TF-IDF Vector, and as Classifier, there are 5 types of SVM (Support Vector Machine), Decision Tree, Random Forest, Logistic Regression, and Gradient Boosting. By applying it, performance comparison for a total of 10 models was conducted. The model with the highest performance was the Gradient Boosting method using TF-IDF Vector input data, and the accuracy was 97%. Therefore, the recommendation system proposed in this study is expected to recommend urban regeneration types based on the regional characteristics of new business sites in the process of carrying out urban regeneration projects."

Development of Beauty Experience Pattern Map Based on Consumer Emotions: Focusing on Cosmetics (소비자 감성 기반 뷰티 경험 패턴 맵 개발: 화장품을 중심으로)

  • Seo, Bong-Goon;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.179-196
    • /
    • 2019
  • Recently, the "Smart Consumer" has been emerging. He or she is increasingly inclined to search for and purchase products by taking into account personal judgment or expert reviews rather than by relying on information delivered through manufacturers' advertising. This is especially true when purchasing cosmetics. Because cosmetics act directly on the skin, consumers respond seriously to dangerous chemical elements they contain or to skin problems they may cause. Above all, cosmetics should fit well with the purchaser's skin type. In addition, changes in global cosmetics consumer trends make it necessary to study this field. The desire to find one's own individualized cosmetics is being revealed to consumers around the world and is known as "Finding the Holy Grail." Many consumers show a deep interest in customized cosmetics with the cultural boom known as "K-Beauty" (an aspect of "Han-Ryu"), the growth of personal grooming, and the emergence of "self-culture" that includes "self-beauty" and "self-interior." These trends have led to the explosive popularity of cosmetics made in Korea in the Chinese and Southeast Asian markets. In order to meet the customized cosmetics needs of consumers, cosmetics manufacturers and related companies are responding by concentrating on delivering premium services through the convergence of ICT(Information, Communication and Technology). Despite the evolution of companies' responses regarding market trends toward customized cosmetics, there is no "Intelligent Data Platform" that deals holistically with consumers' skin condition experience and thus attaches emotions to products and services. To find the Holy Grail of customized cosmetics, it is important to acquire and analyze consumer data on what they want in order to address their experiences and emotions. The emotions consumers are addressing when purchasing cosmetics varies by their age, sex, skin type, and specific skin issues and influences what price is considered reasonable. Therefore, it is necessary to classify emotions regarding cosmetics by individual consumer. Because of its importance, consumer emotion analysis has been used for both services and products. Given the trends identified above, we judge that consumer emotion analysis can be used in our study. Therefore, we collected and indexed data on consumers' emotions regarding their cosmetics experiences focusing on consumers' language. We crawled the cosmetics emotion data from SNS (blog and Twitter) according to sales ranking ($1^{st}$ to $99^{th}$), focusing on the ample/serum category. A total of 357 emotional adjectives were collected, and we combined and abstracted similar or duplicate emotional adjectives. We conducted a "Consumer Sentiment Journey" workshop to build a "Consumer Sentiment Dictionary," and this resulted in a total of 76 emotional adjectives regarding cosmetics consumer experience. Using these 76 emotional adjectives, we performed clustering with the Self-Organizing Map (SOM) method. As a result of the analysis, we derived eight final clusters of cosmetics consumer sentiments. Using the vector values of each node for each cluster, the characteristics of each cluster were derived based on the top ten most frequently appearing consumer sentiments. Different characteristics were found in consumer sentiments in each cluster. We also developed a cosmetics experience pattern map. The study results confirmed that recommendation and classification systems that consider consumer emotions and sentiments are needed because each consumer differs in what he or she pursues and prefers. Furthermore, this study reaffirms that the application of emotion and sentiment analysis can be extended to various fields other than cosmetics, and it implies that consumer insights can be derived using these methods. They can be used not only to build a specialized sentiment dictionary using scientific processes and "Design Thinking Methodology," but we also expect that these methods can help us to understand consumers' psychological reactions and cognitive behaviors. If this study is further developed, we believe that it will be able to provide solutions based on consumer experience, and therefore that it can be developed as an aspect of marketing intelligence.

Basic Research on the Possibility of Developing a Landscape Perceptual Response Prediction Model Using Artificial Intelligence - Focusing on Machine Learning Techniques - (인공지능을 활용한 경관 지각반응 예측모델 개발 가능성 기초연구 - 머신러닝 기법을 중심으로 -)

  • Kim, Jin-Pyo;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.70-82
    • /
    • 2023
  • The recent surge of IT and data acquisition is shifting the paradigm in all aspects of life, and these advances are also affecting academic fields. Research topics and methods are being improved through academic exchange and connections. In particular, data-based research methods are employed in various academic fields, including landscape architecture, where continuous research is needed. Therefore, this study aims to investigate the possibility of developing a landscape preference evaluation and prediction model using machine learning, a branch of Artificial Intelligence, reflecting the current situation. To achieve the goal of this study, machine learning techniques were applied to the landscaping field to build a landscape preference evaluation and prediction model to verify the simulation accuracy of the model. For this, wind power facility landscape images, recently attracting attention as a renewable energy source, were selected as the research objects. For analysis, images of the wind power facility landscapes were collected using web crawling techniques, and an analysis dataset was built. Orange version 3.33, a program from the University of Ljubljana was used for machine learning analysis to derive a prediction model with excellent performance. IA model that integrates the evaluation criteria of machine learning and a separate model structure for the evaluation criteria were used to generate a model using kNN, SVM, Random Forest, Logistic Regression, and Neural Network algorithms suitable for machine learning classification models. The performance evaluation of the generated models was conducted to derive the most suitable prediction model. The prediction model derived in this study separately evaluates three evaluation criteria, including classification by type of landscape, classification by distance between landscape and target, and classification by preference, and then synthesizes and predicts results. As a result of the study, a prediction model with a high accuracy of 0.986 for the evaluation criterion according to the type of landscape, 0.973 for the evaluation criterion according to the distance, and 0.952 for the evaluation criterion according to the preference was developed, and it can be seen that the verification process through the evaluation of data prediction results exceeds the required performance value of the model. As an experimental attempt to investigate the possibility of developing a prediction model using machine learning in landscape-related research, this study was able to confirm the possibility of creating a high-performance prediction model by building a data set through the collection and refinement of image data and subsequently utilizing it in landscape-related research fields. Based on the results, implications, and limitations of this study, it is believed that it is possible to develop various types of landscape prediction models, including wind power facility natural, and cultural landscapes. Machine learning techniques can be more useful and valuable in the field of landscape architecture by exploring and applying research methods appropriate to the topic, reducing the time of data classification through the study of a model that classifies images according to landscape types or analyzing the importance of landscape planning factors through the analysis of landscape prediction factors using machine learning.

Issue tracking and voting rate prediction for 19th Korean president election candidates (댓글 분석을 통한 19대 한국 대선 후보 이슈 파악 및 득표율 예측)

  • Seo, Dae-Ho;Kim, Ji-Ho;Kim, Chang-Ki
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.199-219
    • /
    • 2018
  • With the everyday use of the Internet and the spread of various smart devices, users have been able to communicate in real time and the existing communication style has changed. Due to the change of the information subject by the Internet, data became more massive and caused the very large information called big data. These Big Data are seen as a new opportunity to understand social issues. In particular, text mining explores patterns using unstructured text data to find meaningful information. Since text data exists in various places such as newspaper, book, and web, the amount of data is very diverse and large, so it is suitable for understanding social reality. In recent years, there has been an increasing number of attempts to analyze texts from web such as SNS and blogs where the public can communicate freely. It is recognized as a useful method to grasp public opinion immediately so it can be used for political, social and cultural issue research. Text mining has received much attention in order to investigate the public's reputation for candidates, and to predict the voting rate instead of the polling. This is because many people question the credibility of the survey. Also, People tend to refuse or reveal their real intention when they are asked to respond to the poll. This study collected comments from the largest Internet portal site in Korea and conducted research on the 19th Korean presidential election in 2017. We collected 226,447 comments from April 29, 2017 to May 7, 2017, which includes the prohibition period of public opinion polls just prior to the presidential election day. We analyzed frequencies, associative emotional words, topic emotions, and candidate voting rates. By frequency analysis, we identified the words that are the most important issues per day. Particularly, according to the result of the presidential debate, it was seen that the candidate who became an issue was located at the top of the frequency analysis. By the analysis of associative emotional words, we were able to identify issues most relevant to each candidate. The topic emotion analysis was used to identify each candidate's topic and to express the emotions of the public on the topics. Finally, we estimated the voting rate by combining the volume of comments and sentiment score. By doing above, we explored the issues for each candidate and predicted the voting rate. The analysis showed that news comments is an effective tool for tracking the issue of presidential candidates and for predicting the voting rate. Particularly, this study showed issues per day and quantitative index for sentiment. Also it predicted voting rate for each candidate and precisely matched the ranking of the top five candidates. Each candidate will be able to objectively grasp public opinion and reflect it to the election strategy. Candidates can use positive issues more actively on election strategies, and try to correct negative issues. Particularly, candidates should be aware that they can get severe damage to their reputation if they face a moral problem. Voters can objectively look at issues and public opinion about each candidate and make more informed decisions when voting. If they refer to the results of this study before voting, they will be able to see the opinions of the public from the Big Data, and vote for a candidate with a more objective perspective. If the candidates have a campaign with reference to Big Data Analysis, the public will be more active on the web, recognizing that their wants are being reflected. The way of expressing their political views can be done in various web places. This can contribute to the act of political participation by the people.