• Title/Summary/Keyword: Cuk 컨버터

Search Result 17, Processing Time 0.024 seconds

A New Commutation Circuit for PWM Cuk AC-AC Converter (PWM Cuk AC-AC 컨버터를 위한 새로운 Commutation 회로)

  • Choi Nam-Sup;Li Yulong;Kim In-Dong
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.143-145
    • /
    • 2006
  • This paper proposes a snubber circuit for a PWM AC-AC Cuk converter. The proposed snubber applies a modified Undeland snubber as a commutation aid. The snubber circuit has some good features such as reduction of voltage/current stress of the main switches, improved efficiency. The experiment results show the adaptability and feasibility of the proposed snubber circuit.

  • PDF

Instantaneous Following PWM Control Strategy of Cuk Converter Using Integrator (적분기를 이용한 Cuk 컨버터의 순시추종형 PWM 제어)

  • Shon, Je-Bong;Jeong, Soon-Yang;Kim, Kwang-Tae;Lee, Woo-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.103-105
    • /
    • 2002
  • Instantaneous following PWM control technique is pulsed nonlinear dynamic control method. This new control technique using analog integrator is proposed to control the duty ratio D of Cuk converter. In this control method, the duty ratio of a switch is exactly equal to or proportional to the control reference in the steady state or in a transient. Proposed control method compensates power source perturbation in one switching cycle, and the average value of the dynamic reference in one switching cycle. There is no steady state error nor dynamic error between the control reference and the average value of the switched variable. Experiments with Cuk converter have demonstrated the robustness of the control method and verified theoretical prediction. The control method is very general and applicable to all type PWM.

  • PDF

An Efficiency Improvement of the Photovoltaic Generation System by Using the PPT based Converter (병렬전력전달 방식에 의한 DC/DC 컨버터의 효율 개선)

  • Lee, Seong-Ryong;Jeon, Chil-Hwan;Lee, Eun-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1404-1406
    • /
    • 2005
  • 본 논문에서는 기존의 DC/DC 컨버터에 특별한 소자의 부가나 가격의 증가 없이 효율을 향상시키기 위한 방안에 대하여 논하였다. 이에 따라 병렬전력전달 방식(Parallel Power Transfer, PPT) 기반 Cuk 컨버터를 제안하였고, 이의 효율 향상 효과를 이론적으로 해석하고, 기존에 널리 사용되고 있는 DC/DC 컨버터와 특성을 비교 분석하였다. 마지막으로 이를 제안된 이론을 기본으로 DC 48V 전원 공급용 시스템을 설계하고, 구성한 다음 PSIM 시뮬레이션을 통해 시스템의 효율 향상 효과와 그 유용성을 입증하였다.

  • PDF

Compare of buck-boost converter and Boost converter using the IC MPPT method Efficiency (IC MPPT 방법을 이용한 벅-부스트 컨버터와 부스트 컨버터의 효율분석 및 비교)

  • Kim, Yu-Tak;Ko, Jae-Sub;Seo, Tae-Young;Kang, Sung-Min;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.952-953
    • /
    • 2015
  • In this paper, various MPPT control in the most simple and widely used method of IC using the method According to the type of DC-DC converter to analyze the efficiency buck-boost convertor, Cuk convertor using each efficiency was analyzed.

  • PDF

A New ZVS Bi-directional CUK DC/DC Converter for a Car Dual Power Supply System (자동차 이중전원 시스템을 위한 새로운 ZVS 양방향 CUK DC/DC 컨버터)

  • Lee S. R.;Lee S. W.;Ko S. H.;Mun J. M.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.355-358
    • /
    • 2004
  • Currently, to overcome the limit of a 14V power supply system and to enhance the stability of this system high and to make the fuel efficiency better, a research development of a 42V power supply system is actively the progress. As an intermediate step to change into an unity power supply system, a 42V/14V dual power supply system uses a DC/DC Converter as one of structure elements. Considering the main electric power sources in the next generation of the car is a 42V system a 14V power supply system has advantages as follows : In be managed efficiently and to increase the redundancy at start, to jump start with any vehicles, etc. We need the introduction of a hi-directional converter that can flow the energy each other in a dual 42V-l2V system. This paper proposed the ZVS hi-directional CUK DC/DC converter which decrease the weight with the size of the DC/DC Converter and minimize the loss when the switching happen. In this paper, a circuit design method and an action principle of the circuit was proposed. To verify the proposed circuit, a comprehensive evaluation with theoretical analysis, simulation results is presented.

  • PDF

Fuel Cells Z-Source Active Power Filter with the Z-Source Network Voltage Compensation Capability (Z-소스 네트워크의 전압보상 기능을 갖는 연료전지 Z-소스 액티브 필터)

  • Kim J.N.;Jung Y.G.;Lim Y.C.;Kim K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.512-515
    • /
    • 2006
  • 일반적으로 연료전지 Z-소스 액티브 필터는 고조파 보상전류가 급변하는 경우, 연료전지의 특성에 기인하여 Z-소스 네트워크의 전압이 강하하는 현상이 발생한다. 본 연구에서는 이상의 문제점을 개선하기위한 Z-소스 네트워크의 전압강하 보상기능을 갖는 Z-소스 액티브 필터를 제안하였다. Z-소스 네트워크의 전압보상을 위하여 절연형 Cuk 컨버터가 사용되었다. PSIM을 이용하여 부하 급변의 과도상태에서 제안된 방법의 타당성이 입증되었다.

  • PDF

Comparison of Main Circuit Type Characteristics of LED Driver for Output Ripple Reduction (출력 리플 저감을 위한 LED 드라이버의 주회로 방식 특성 비교)

  • Park, Dae-Su;Kim, Tae-Kyung;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.491-499
    • /
    • 2019
  • Recently, there has been increasing demand for power quality in power supply devices. The IEC 61000-3-2 standard requires that the AC / DC power supply for lighting meet the specifications for the power factor (PF) and total waveform distortion (THD). In addition, advanced countries in Europe are regulating the ripple rate as 15 ~ 30% for the flicker phenomenon caused by the change in the amount of foot energy due to the change in current of the output terminal. Therefore, domestic standards and regulations are being updated. This study adopted the Flyback converter to satisfy the PFC standard, and has the circuit first and second insulation function. To reduce the low frequency ripple of the LED current, Flyback, Coupled Inductor, LC parallel resonance filter, LLC resonance filter, and Cuk were simulated by PSIM to mimic each LED driving circuit. A coupled LC resonant circuit with a coupled inductor on the primary side and LC resonance on the secondary side was also proposed for output side ripple reduction.