• Title/Summary/Keyword: Cucumber powdery mildew

Search Result 74, Processing Time 0.024 seconds

Control of downey mildew occurred on cucumber cultivated under plastic film house condition by optimal application of chemical and installation of ventilation fan (환기조절 및 약제적기살포에 의한 비닐하우스재배 오이에 발생하는 노균병 방제)

  • Kim, Yong-Ki;Ryu, Jae-Dang;Ryu, Jae-Gee;Lee, Sang-Yeob;Shim, Hong-Sik
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.3
    • /
    • pp.223-227
    • /
    • 2003
  • Survey on plant diseases occurring on cucumber cultivated in plastic film house of experimental farm in Suwon was conducted. Through the survey, occurrence of damping-off, downey mildew, powdery mildew and Fusarium wilt was observed. Especially downey mildew caused by Pseudoperonospora cubensis was the most severe foliar disease of cucumber. To control the disease effectively, effects of installation of ventilation fan and optimal spray timing of a chemical, dimethomorph+copper oxychloride WP, were investigated. Two ventilation fans installed at the front and at the back of plastic film house reduced air relative humidity by about 6.4% and downey mildew incidence by 55.7%. Downey mildew incidence on cucumber from untreated chemicals plot in plastic film house installed with ventilation fan was on a equal level with that from treated chemicals plot with three times application of dimethomorph+copper oxychloride WP in plastic film house without ventilation fan. Meanwhile in order to select optimal chemical application time, dimethomorth+copper oxychloride WP was treated three times at 7 days-interval from three days before the disease occurred, right after the disease occurred, and two days after the disease occurred, respectively. The result showed that dimethomorth+copper oxychloride WP applied to cucumber leaves and stems from three days prior to, right after, two days after occurrence of downey mildew reduced downey mildew incidence by 72.9, 61.8, and 23.7%, respectively. The above results showed that regulation of environmental factors like air relative humidity and preventive application of chemicals should be considered to establish control strategy to downey mildew.

Control Effect of Alternative Fungicide Spraying System on Powdery Mildew Caused by Podosphaera xanthii on Greenhouse Cucumber (약제교호살포에 따른 시설재배 오이 흰가루병(Podosphaera xanthii) 방제효과)

  • Park, Se-Keun;Park, Bue-yong;Jeong, In-Hong;Jeon, Sung-wook;Ryu, Hyun-ju;Lee, Sang-bum
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.538-543
    • /
    • 2018
  • Powdery mildew caused by Podosphaera xanthii is a disease in cucurbit crops especially in green house. The objective of this study was to determine the effect of alternative fungicide spraying system for control of powdery mildew disease. We selected four fungicides with different mode of action and made three treatment combinations of each fungicide in 2017. Pyraclostrobin-flutianyl-penthiopyrad treatment showed the highest control value (87%) while, pyraclostrobin-pyraclostrobin-pyraclostrobin treatment showed the lowest control value (32.5%). So it seemed like the treatment was not suitable for control of powdery mildew. In 2018, pyraclostrobin of pyraclostrobin-flutianyl-penthiopyrad was replaced to contact fungicide called iminoctadine-tris-albesilate and compared control effect of two treatments. Two of the treatments showed similar control value (87.0% for pyraclostrobin, 89.0% for iminoctadine-tris-albesilate). These two tests in 2017 and 2018 indicated that alternative treatment of different fungicides is essential for controlling of powdery mildew and inhibiting development of fungicide resistance.

Evaluation of Environment-friendly Control Agents for the Management of Powdery Mildew Infection during Seedling Stage of Three Cucurbitaceae Vegetables (친환경 육묘시 세 가지 박과채소의 흰가루병에 대한 친환경 제제의 방제효과)

  • Yeo, Kyung-Hwan;Jang, Yoon Ah;Kim, Su;Um, Young Chul;Lee, Sang Gyu;Rhee, Han Cheol
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.413-420
    • /
    • 2013
  • The purpose of this study was to evaluate the control efficacy of major environment-friendly control agents against powdery mildew, as affected by the application condition such as disease-developing stage and microclimate, as compared with the efficacy of pesticides in plug seedling of three Cucurbitaceae vegetables, including cucumber, melon, and oriental melon. Single or combined application of major six environment-friendly control agents was used in the experiment: two biofungicide (Ampelomyces quisqualis 94013 and Bacillus subtilis Y1336), two plant extracts (neem oil and extracts of Rheum undulatum), and two mineral materials (wettable sulfur powder and lime bordeaux mixture). These control agents were treated to the plug seedlings for preventing powdery mildew and curative applications for managing powdery mildew. In all treatments, the disease incidence declined as daily average temperatures increased to $30^{\circ}C$ for consecutive 6~8 days with maximum temperature over $40^{\circ}C$. In preventative application, the control efficacy against powdery mildew was the highest in the treatment of wettable sulfur powder, and lowest in the B. subtilis Y1336, with values of 20~40%. In cucumber seedlings, the preventive single application of neem oil or wettable sulfur powder was more effective than curative application of fungicides, while the control efficacy of these agents was similar to those of fungicides in melon seedlings. The single application of R. undulatum extracts was also effective in preventing the disease for both cucumber and melon seedlings, showing a higher control efficacy than those of biofungicides during seedling stage. The treatment of water spray was not effective and showed a higher disease incidence than the untreated control plot in the oriental melon and melon seedlings. The curative application with environment friendly control agents, after powdery mildew was first detected, could not successfully controlled the disease at the middle stage (5~10% of disease incidence) of disease development. The curative combined application of [R. undulatum extracts (1st application) + wettable sulfur powder (2nd) + neem oil (3rd)] showed the highest control efficacy among the other treatments, with control value over 80% at the early stage (less than 1% of disease incidence) of disease development.

Development and evaluation of a model for management of plant pests in organic cucumber cultivation

  • Ko, S.J.;Kang, B.R.;Kim, D.I.;Choi, D.S.;Kim, S.G.;Kim, H.K.;Kim, H.J.;Choi, K.J.;Kim, Y.C.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.263-266
    • /
    • 2011
  • Crop protection strategies in organic horticulture aim to prevent insect pest and plant disease problems through utilization of non-chemical based control means. In order to develop a model for management of plant diseases and insects in organic cucumber cultivation, we compared efficacies between chemical pesticide spraying system and biological control means in semi-forcing and retarding cucumber cultivation during 2005 and 2006. Conventional chemical spray program using various chemical pesticides was applied 5 - 10 days intervals, while two different non-chemical pesticide application programs using two formulated biopesticides Topseed$^{TM}$ and Q-fect$^{TM}$, Suncho$^{TM}$, and Sangsungje$^{TM}$ (biocontrol agents 1) and using egg-yolk and cooking oil(EYCO), Bordeaux mixture, Suncho$^{TM}$, and Sangsungje$^{TM}$ (biocontrol agents 2) were applied 5 - 7 days intervals during entire cucumber cultivation period. Efficacy of both biocontrol agents programs was effective to comparable to conventional chemical pesitice spray program to control plant diseases such as powdery mildew and downy mildew as well as insect pests such as aphids and thrips which are known as major threats in cucumber organic cultivation. In this study, we established and evaluated an effective and economic crop protection strategy using various biological resources can be used to control plant diseases and pests simultaneously in organic cucumber cultivation field.

Evaluation of Electrolyzed Oxidizing Water as a Control Agent of Cucumber Powdery Mildew

  • Lee, Yong-Hwan;Cha, Kwang-Hong;Ko, Sook-Ju;Park, In-Jin;Park, Boung-In;Seong, Ki-Young
    • The Plant Pathology Journal
    • /
    • v.16 no.4
    • /
    • pp.206-210
    • /
    • 2000
  • The effect of the electrolyzed oxidizing water on Sphaerotheca fuliginea was investigated with germination and sporulation of the fungal conidia. The sporulation was inhibited by the electrolyzed oxidizing water of pH 2.5, 3.5, and 4.5, but was not inhibited by the distilled water adjusted pH with 1N-HCL solution. However, the electrolyzed oxidizing water did not affect conidial germination. The oxidation-reduction potential at pH 2.5 and pH 3.5 of electrolyzed oxidizing water were 1130 mV and 1060 mV, respectively, but those of distilled water adjusted with HCL solution were 550 mV and 490 mV, respectively. When the electrolyzed oxidizing water of ORP over 1100 mV was sprayed on cucumplanting, the disease severities of powdery mildew were about 8.5% and 19.2%, respectively. Disease severity of a standard control (triflumizole 30% WP, $500\textrm{mg}\textrm{/L}$) was about 3.0%, while that of plants without electrolyzed oxidizing water was to 45.8%.

  • PDF

Control of Fungal Diseases with Antagonistic Bacteria, Bacillus sp. AC-1

  • Park, Yong-Chul-
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.50-61
    • /
    • 1994
  • Biological control of important fungal diseases such as Phytophthora blight of red pepper, gary mold rot of vegetables, and powdery mildew of many crops was attempted using an antagonistic bacterium, Bacillus sp. AC-1 in greenhouses and fields. The antagonistic bacterium isolated from the rhizosphere soils of healthy red pepper plant was very effective in the inhibition of mycelial growth of plant pathogenic fungi in vitro including Phytophthora capsici, Rhizoctonia solani, Pyricularia oryzae, Botrytis cinerea, Valsa mali, Fusarium oxysporum, Pythium ultimum, Alternari mali, Helminthosporium oryzae, and Colletotrichum gloeosporioides. Culture filtrate of antagonistic Bacillus sp. AC-1 applied to pot soils infested with Phytophthora capsici suppressed the disease occurrence better than metalaxyl application did until 37 days after treatment in greenhouse tests. Treatments of the bacterial suspension on red pepper plants also reduced the incidence of Phytophthora blight in greenhouse tests. In farmers' commercial production fields, however, the controlling efficacy of the antagonistic bacteria was variable depending on field locations. Gray mold rot of chinese chives and lettuce caused by Botrytis cinerea was also controlled effectively in field tests by the application of Bacillus sp. AC-1 with control values of 79.7% and 72.8%, respectively. Spraying of the bacterial suspension inhibited development of powdery mildew of many crops such as cucumber, tobacco, melon, and rose effectively in greenhouse and field tests. The control efficacy of the bacterial suspension was almost same as that of Fenarimol used as a chemical standard. Further experiments for developing a commercial product from the antagonistic bacteria and for elucidating antagonistic mechanism against plant pathogenic fungi are in progress.

  • PDF

Biocontrol Activity of Acremonium strictum BCP Against Botrytis Diseases

  • Choi, Gyung-Ja;Kim, Jin-Cheol;Jang, Kyoung-Soo;Nam, Myeong-Hyeon;Lee, Seon-Woo;Kim, Heung-Tae
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.165-171
    • /
    • 2009
  • Biological control activity of Acremonium strictum BCP, a mycoparasite on Botrytis cinerea, was examined against six plant diseases such as rice blast, rice sheath blight, cucumber gray mold, tomato late blight, wheat leaf rust, and barley powdery mildew in growth chambers. The spore suspension of strain BCP showed strong control activities against five plant diseases except against wheat leaf rust. On the other hand, the culture filtrate of A. strictum BCP was effective in controlling only cucumber gray mold and barley powdery mildew. Further in vivo biocontrol activities of A. strictum BCP against tomato gray mold were investigated under greenhouse conditions. Control efficacy of the fungus on tomato gray mold increased in a concentration-dependent manner. Treatment of more than $1{\times}10^6$ spores/ml significantly controlled the disease both in tomato seedlings and in adult plants. The high disease control activity was obtained from protective application of the strain BCP, whereas the curative application did not control the disease. Foliar infections of B. cinerea were controlled with $1{\times}10^8$ spores/ml of A. strictum BCP applied up to 7 days before inoculation. In a commercial greenhouse, application of A. strictum BCP exhibited the similar control efficacy with fungicide procymidone (recommended rate, $500{\mu}g/ml$) against strawberry gray mold. These results indicate that A. strictum BCP could be developed as a biofungicide for Botrytis diseases under greenhouse conditions.

Cultural Characteristics of a Hyperparasite, Ampelomyces quissqualis 94013 (중복기생균 Ampelomices quisqualis 94013의 배양적 특성)

  • Lee, Sang-Yeob;Ryu, Jae-Dang;Kim, Hong-Gi
    • Research in Plant Disease
    • /
    • v.11 no.2
    • /
    • pp.173-178
    • /
    • 2005
  • Ampelomyces quisqualis 94013 (AQ94013), a hyperparasite, was selected as an effective biological control agent against cucumber powdery mildew. Optimal temperature for mycelial growth of AQ94013 was $26^{\circ}C$, and the optimal pH was 6.5. Conidia of AQ94013 were more Produced on potato dextrose agar (PDA) in darkness than under alternating cycles of 12 hr fluorescent light and 12 hr darkness. Temperature range for spore germination of the fungus was $10\~35^{\circ}C$, and optimal temperature was $20^{\circ}C$. Conidial germination of the fungus began 8 hr after incubation at $24^{\circ}C$. Germination rate of conidia at concentration of $5{\times}10^5\;spores/ml\;and\;5{\times}10^6\;spores/ml$ was higher than at concentration of $5{\times}10^7\;spores/ml$. The best source of carbon and nitrogen for mycelial growth of the fungus were dextrin and neopeptone, respectively.

Mass Cultivation of A Hyperparasite, Ampelomyces quisqualis 94013 for Biological Control of Powdery Mildew (흰가루병 생물적 방제용 중복기생균 Ampelomyces quisqualis 94013의 대량배양)

  • Lee, Sang-Yeob;Kim, Yong-Ki;Kim, Hong-Gi
    • Research in Plant Disease
    • /
    • v.13 no.3
    • /
    • pp.191-196
    • /
    • 2007
  • An isolate of Ampelomyces quisqualis 94013(AQ94013) was selected as an effective agent for biological control against cucumber powdery mildew. In order to develop mass production technique, six cereal media made with barley, rice, mille and brown rice, sorghumand rice seed were tested. Among them, barley medium was the best for the growth and conidial production of AQ94013. Optimum temperature for the mass production of AQ94013 was $25^{\circ}C$ and followed by $20^{\circ}C$ and $30^{\circ}C$. Light radiation inhibited conidial production of AQ94013 since number of conidia formed on barely medium under continuous light or 12 hrs alternative light were much less than cultured in darkness. Tthe conidia produced on the medium at $30^{\circ}C$ maintained the parasitic ability to Sphaerotheca fusca for 30 days. A culture method of AQ94013 in barley liquid medium with adding barely power(40 g/l) in darkness for five days at $25^{\circ}C$using a 30 l-fermenter was very effective for mass production of conidia.

Effect of a Bioactive Substance Extracted from Rheum undulatum on Control of Cucumber Powdery Mildew (대황에서 추출한 생리 활성 물질의 흰가루병 방제 효과)

  • 백수봉;경석헌;김종진;오연선
    • Korean Journal Plant Pathology
    • /
    • v.12 no.1
    • /
    • pp.85-90
    • /
    • 1996
  • 대황 추출물(RK)과 화학약품 1, 8-dihydroxy anthraquinone(AK)을 제제화하여 오이 흰가루병에 대한 약효, 약해 및 어독성을 조사하였다. 제제화한 RK와 AK 약제를 하우스에서 500배, 1000배 희석농도로 처리했을 경우 오이 흰가루병에 대하여 100%의 방제효과를 나타냈고, pot에서 2,000배, 3,000배, 5,000배 희석농도로 처리했을 때 모두 75% 이상의 방제효과를 나타냈다. 또 노지에서 4,000배, 5,000배 희석농도로 처리해도 75.3% 이상의 방제효과를 나타냈다. RK 약제는 250배 희석농도에서 오이에 약해가 없었으나 AK 약제는 250배 희석농도에서 약해가 있었다. 어독성은 두 약제 모두 반수치사농도(TLm)가 2ppm 이상으로 독성은 낮은 것으로 판정되었다.

  • PDF