• Title/Summary/Keyword: Cubic-spline interpolation

Search Result 112, Processing Time 0.029 seconds

Dynamic Gait embody using angular acceleration for a Walking Robot (각가속도를 이용한 이족 로봇의 동적 걸음새 구현)

  • Park, Jae-Mun;Park, Seung-Yub;Ko, Bong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.2
    • /
    • pp.209-216
    • /
    • 2007
  • In this paper, we embodied posture-stabilization and dynamic gait in a walking robot. 10 RC servo motors are used to operate joints. And the joints have enough moving ranges suitable in any walking pattern. Each joint trajectory is generated by cubic spline interpolation method and the stability of the trajectory is verified by using Zero Moment Point from the robot modeling. To avoid complex structure and expression, Zero Moment Point of the biped robot used angular acceleration is suggested. To measure the stability of the biped robot, Tilt sensor and gyro sensor are used. Finally, Personal Computer is used computer monitoring and data processing. Most of computation, such as 10 RC servo motor control, joint trajectory generating, ZMP compensation, sense measuring, etc, was used Digital Signal Processor.

  • PDF

Numerical Quadrature Techniques for Inverse Fourier Transform in Two-Dimensional Resistivity Modeling (2차원 전기비저항 모델링에서 후리에역변환의 수치구적법)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.73-77
    • /
    • 1992
  • This paper compares numerical quadrature techniques for computing an inverse Fourier transform integral in two-dimensional resistivity modeling. The quadrature techniques using exponential and cubic spline interpolations are examined for the case of a homogeneous earth model. In both methods the integral over the interval from 0 to ${\lambda}_{min}$, where ${\lambda}_{min}$, is the minimum sampling spatial wavenumber, is calculated by approximating Fourier transformed potentials to a logarithmic function. This scheme greatly reduces the inverse Fourier transform error associated with the logarithmic discontinuity at ${\lambda}=0$. Numrical results show that, if the sampling intervals are adequate, the cubic spline interpolation method is more accurate than the exponential interpolation method.

  • PDF

A Scheme for Computing Time-domain Electromagnetic Fields of a Horizontally Layered Earth (수평다층구조에 대한 시간영역 전자기장의 계산법)

  • Jang, Hangilro;Kim, Hee Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.139-144
    • /
    • 2013
  • A computer program has been developed to estimate time-domain electromagnetic (EM) responses for a onedimensional model with multiple source and receiver dipoles that are finite in length. The time-domain solution can be obtained by applying an inverse fast Fourier transform (FFT) to frequency-domain fields for efficiency. Frequency-domain responses are first obtained for 10 logarithmically equidistant frequencies per decade, and then cubic spline interpolated to get the FFT input. In the case of phases, the phase curve must be made to be continuous prior to the spline interpolation. The spline interpolated data are convolved with a source current waveform prior to FFT. In this paper, only a step-off waveform is considered. This time-domain code is verified with an analytic solution and EM responses for a marine hydrocarbon reservoir model. Through these comparisons, we can confirm that the accuracy of the developed program is fairly high.

Performance Analysis of Channel Estimation Schemes for MF Band Digital Radio Broadcasting System (MF 대역 디지털 라디오 방송 시스템을 위한 채널 추정 기법의 성능분석)

  • Song, Jung-Hoon;Kim, Ki-Nam;Roh, Jae-Sung;Cho, Sung-Joon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.599-603
    • /
    • 2003
  • In this paper, the efficient channel estimationschemes for DRM system(AM band digital radio broadcasting standard) are investigated. In frequency domain, by means of the linear interpolation, the second order interpolation, cubic spline interpolation, and time domain interpolation, the channel impulse response is estimated respectively to compensate the attenuation due to the fading. And in time domain, the frequency channel impulse response is averaged to reduce the attenuation due to the AWGN. By the simulation, the performance of MSE, BER and the complexity of calculation is compared and analysized for each interpolation scheme.

  • PDF

Numerical Flow Analysis of Ducted Marine Propeller with Pre-Swirl Guidevane (전치 가이드베인을 가지는 수중 덕트 프로펠러 주위의 전산 유동 해석)

  • Yu Hye-Ran;Jung Young-Rae;Park Warn-Gyu
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.62-69
    • /
    • 2004
  • The present work solved 3D incompressible RANS equations on a rotating, multi-blocked grid system to efficiently analyze ducted marine propulsor with the interaction of propeller guidevane and annular duct. To handle the interface boundary between the guidevane and the propeller, a sliding multiblock technique based on the cubic spline interpolation was applied. To validate the present code, a turbine flow was simulated and the time-averaged pressure coefficients were compared with experiment. After the code validation, the flowfield around a ducted marine propeller with pre-swirl guidevane was simulated.

Lung and Airway Segmentation using Morphology Information and Spline Interpolation in Lung CT Image (흉부 CT 영상의 형태학적 정보 및 Spline 보간법을 이용한 폐 및 기관지 분할 알고리즘)

  • Cho, Joon-Ho;Kim, Jung-Chul
    • Journal of Broadcast Engineering
    • /
    • v.18 no.5
    • /
    • pp.702-712
    • /
    • 2013
  • In this paper, we proposed an algorithm that extracts the airway and lung without loss of information in spite of the pulmonary vessel and nodules of the chest wall in the chest CT images. We use a mask image in order to improve the performance and to save processing time of airway and lung segmentation. In the second step, by converting left and right lungs to binary image using the morphological information, we have removed the solitary pulmonary nodule to identify the value of the threshold lung and the chest wall. The last step is to connect the outer shell of the lung with cubic Spline interpolation by adding the perfect pixel and computing the distance of the removed part. Experimental results using Matlab verified that the proposed method could overcome the drawbacks of the conventional methods.

Performance Improvement of Material Recognition Sensor Using Cubic Spline Interpolation (Spline보간식을 이용한 물체재질인식센서의 성능개선)

  • Park, J.G.;Lim, Y.C.;Cho, K.Y.;Kim, Y.G,;Chang, Y.H.
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.43-51
    • /
    • 1992
  • This paper describes a noble robot sensor designed to recognize an unknown material by measuring its thermal conductivity on various ambient temperature. The excellent agreement has been obtained between the measured sensor temperature and the calculated sensor temperature by cubic spline interpolation. The active sensor to measure the thermal conductivity of a gripped object was designed and the software program using C language to discriminate objects made of different materials was developed. The temperature response characteristics of different materials on the same ambient temperature was investigated. The temperatures on three comparing points varied linearly and had parallel relation with one another in accordance with various ambient temperature.

  • PDF

Estimation of Uncertain Past and Future Locations of Moving objects (이동 객체의 불확실한 과거 및 미래의 위치 추정)

  • 안윤애;류근호
    • Journal of KIISE:Databases
    • /
    • v.29 no.6
    • /
    • pp.441-452
    • /
    • 2002
  • If continuous moving objects are managed by conventional database, it is not possible for them to store all position information changed over time in the database. Therefore, a time period of regular rate is determined and position information of moving objects are discretely stored in the system for every time period. However, if continuous moving objects are managed as discrete model, we will have problems which cannot properly answer to the query about uncertain past or future position information. To solve this problem, in this paper, we propose the method and algorithm which use the history information stored in the same database, to estimate the past or future location of moving objects. The cubic spline interpolation is used to estimate the past location and the mean movement value of the history information is used to predict the future location of moving objects. Finally, from the location estimation experimentation of using virtual trajectory and location sample, we proved that the proposed cubic spline function has less error than the linear function.

Performance Analysis of A Variable Bit Rate Speech Coder (가변 비트율 음성 부호화기의 성능분석)

  • Iem, Byeong-Gwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1750-1754
    • /
    • 2013
  • A variable bit rate speech coder is presented. The coder is based on the observation that a speech signal can be viewed as a combination of piecewise linear signals in a short time period. The encoder detects the sample points where the slope of the signal changes, which are called the inflection points in this paper. The coder transmits the location and value for the detected inflection sample, but only the location information for the noninflection samples. In the decoder, the noninflection samples are estimated with interpolation of the received information. Several factors affecting the performance of the coder have been tested through simulation. Simulation results show that the linear interpolation produces 1 ~ 5 dB improvement over the cubic spline interpolation. And the -law companding does not provide any benefit when it is applied before the inflection detection. With low threshold values in the inflection point detection, the coder shows better MOS and more than 16 dB improvement in SNR compared to the continuously variable slope delta modulation (CVSDM).

Assessment of Interpolation Schemes in the Window Deformation PIV (조사구간 윈도우 변형을 이용한 PIV에서 보간법 평가)

  • Kim, Byoung-Jae;Sung, Hyung-Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.59-68
    • /
    • 2006
  • We have evaluated the performances of the following six interpolation schemes used for win-dow deformation in particle image velocimetry (PIV): the linear, quadratic, B-spline, cubic, sinc, Lagrange interpolations. Artificially generated images comprised of particles of diameter in a range pixel were investigated. Three particle diameters were selected for detailed evaluation: pixel with a constant particle concentration $0.02particle/pixel^2$. Two flow patterns were considered: uniform and shear flows. The mean and random errors, and the computation times of the interpolation schemes were determined and compared.

  • PDF