• Title/Summary/Keyword: Cube-Satellite

Search Result 87, Processing Time 0.104 seconds

Launch and On-orbit Environment Verification Test of Flight Model of Hinge Driving Type Holding and Release Mechanism based on the Burn Wire Release (열선분리방식을 이용한 힌지구동형 구속분리장치 비행모델의 발사 및 궤도환경 검증시험)

  • Lee, Myeong-Jae;Lee, Yong-Keun;Kang, Suk-Joo;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.274-280
    • /
    • 2016
  • Hinge driving type holding and release mechanism based on the burn wire release for application of cubesat is main payload of STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project) to be launched at 2015. It has high constraint force, low shock level as well as surmounting drawbacks of conventional nichrome burn wire release method that has relatively low constraint force and system complexity for application of multi-deployable systems. In this paper, we have proposed a flight model of holding and release mechanism for the verification of the constraint force and deployment status signal acquisition. To validate the effectiveness of the flight model, launch and on-orbit environment verification test have been performed.

Development of Flight Software for SIGMA CubeSat (SIGMA 큐브위성의 비행 소프트웨어 개발)

  • Lee, Jeongho;Lee, Seongwhan;Lee, JungKyu;Lee, Hyojeong;Shin, Jehyuck;Jeong, Seonyeong;Oh, YoungSeok;Jin, Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.363-372
    • /
    • 2016
  • SIGMA(Scientific cubesat with Instruments for Global Magnetic field and rAdiation) CubeSat has been developed for magnetic field measurement of the Earth and space radiation measurement at Kyung Hee university. The flight software plays important roles in controlling the satellite and processing the data in the space mission. In this paper, the Flight Software has been implemented to process all the tasks in the one thread without RTOS(Real Time Operating System). This is an effective mothed not only to concentrate the space mission of CubeSat but also to reduce the overhead of the Flight Software by considering the mission perform procedures and the system control methods.

Functional Verification of Nylon Wire Cutting-Type Holding & Release Mechanism for 6U CubeSat's Solar Panel (나일론선 절단방식 6U 큐브위성용 태양전지판 구속분리장치의 기능검증)

  • Park, Yeon-Hyeok;Go, Ji-Seong;Chae, Bong-Geon;Lee, Seong-Ho;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.867-875
    • /
    • 2018
  • Conventional nylon wire cutting-type holding and release mechanisms (HRMs) are limited to securely hold the solar panel under launch environment as the size of the panel increases because the nylon wire is tightened directly on the surface of the solar panel. In this study, we proposed a nylon wire cutting-type HRM for 6U CubeSat's solar panel applying elliptic-shaped bracket with a Ball & Socket interface. The proposed HRM has the advantage of higher holding capability along in-plane and out-of plane directions of solar panel and simplicity in tightening process of nylon wire. The design drivers of structural design of CubeSat's solar panel with the proposed HRM were defined by structural analysis under launch loads. In addition, The design effectiveness of the proposed HRM was verified through the functional tests according to the thickness of nylon wire and the number of wire winding under various temperature conditions.

Low-Cost Small Satellite Research and Development as an Education Tool (교육용 도구로서의 저가 소형위성 연구 및 개발)

  • 문병영;장영근;이병훈
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.80-91
    • /
    • 2006
  • A method of multidisciplinary education has been implemented for satellite design, based on HAUSAT-1 and 2 ultra-small satellite development projects, in order to provide practical knowledge and experience to students studying satellite engineering. HAUSAT-1 was the nation's first 1kg-class ultra-small satellite. HAUSAT-2 nano-satellite is currently under a Proto-Flight Model development. These design projects make it possible to achieve the goal of science and technical research, which is representative of a university function, and the goal of molding professionals through providing an integrated function of system design education. An integrated system design, like satellite system, provides all participating students with an opportunity to directly/indirectly experience the entire system development process and encourage growth of multidisciplinary system education that has lately become an important issue.

Analysis and Test results for the EOS(Electro Optical Subsystem) geometric mapping of the KOMPSAT2 Telescope

  • Jung Dae-Jun;Jang Hong-Sul;Lee Seung-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.489-492
    • /
    • 2005
  • As a former level of MSC(Multi Spectral Camera) telescope of the KOMPSA T2satellite, the several performance tests of EOS(Electro Optical Subsystem) were performed in the EOS level. By these tests, not only the design requirement of payload can be verified but also the test result can be the important criterion to estimate the performance of payload in the launch and space orbit environment. The EOS Geometric Mapping test is to verify the accuracy of the alignment & assembly on the Subsystem of the MSC by measurement like these; LOS(Line of Sight), LOD(Line of Detector), Band to Band Registration, Optical Distortion and Reference Cube. This paper describes the test results and the analysis for the EOS Geometric Mapping.

  • PDF

A Study on HAUSAT-1 Satellite Fault-Tolerant System Architecture Design

  • Kim, Young-Hyun;Chang, Young-Keun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.37-50
    • /
    • 2003
  • A next generation small satellite HAUSAT-1, the first picosatellite developed in Korea, is being developed as one of the international CubeSat program by Space System Research Lab. of Hankuk Aviation University. A fault-tolerant incremental design methodology has been addressed in this paper. In this study, the effect of system redundancy on reliability was in details analyzed in accordance with the implementation of fault-tolerant system. Four different system recovery levels are proposed for HAUSAT-1 fault-tolerant system optimization. As a result, the HAUSAT-1 fault-tolerant system architecture design and reliability analysis has acquired about 11% reliability improvement.

Development of HAUSAT-1 Picosatellite Communication Subsystem as a Test Bed for Small Satellite Technology

  • Moon, Byoung-Young;Kim, Young-Hyun;Chang, Young-Keun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.6-18
    • /
    • 2004
  • This paper addresses the development and design of the HAUSAT-l (Hankuk Aviation University SA'Tellite-D communication subsystem, which is a next generation picosatellite, developed by SSRL (Space System Research Lab.) of Hankuk Aviation University. The communication subsystem generally consumes the majority of power and volume for picosatellites, and thus its design is critical to the overall satellite and mission plans. The HAUSAT-l designs are implemented by using the 145.84 MHz for uplink and 435.84 MHz for downlink frequency bands. The simulation and test results of the homemade radio and the TNC (Terminal Node Controller) integrated on the HAUSAT - I , a picosatellite scheduled to launch on September 2004 by Russian launch vehicle "Dnepr", are presented for EM, QM and FM, respectively.

Functional Verification of the Solar Panel Separation Mechanism for Pico-Class Satellite Applications Using Spring-loaded Pogo-pin (포고핀을 활용한 극초소형 위성용 태양전지판 분리장치의 기능검증)

  • Kim, Su-Hyeon;Jeon, Young-Hyeon;Kim, Hong-Rae;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.69-75
    • /
    • 2018
  • In this study, we proposed a nylon wire cutting-type solar panel separation mechanism for CubeSat applications using spring-loaded pogo-pins, which has been widely used as temporary electrical interface between two separate electronics. The mechanism proposed in this study has great advantages of higher holding capability, ability to constrain along in-plane and out-of-plane directions of solar panels, simplicity in tightening of nylon wire and synchronous separation of multiple panels. In addition, the pogo-pins used for the proposed mechanism act as electrical power interface, separation status switch and separation spring. In this study, the functionality of the proposed mechanism was validated through the separation tests with various number of nylon wire windings.

CONCEPTUAL STRUCTURAL DESIGN AND COMPARATIVE POWER SYSTEM ANALYSIS OF OZONE DYNAMICS INVESTIGATION NANO-SATELLITE (ODIN)

  • Park, Nuri;Hwang, Euidong;Kim, Yeonju;Park, Yeongju;Kang, Deokhun;Kim, Jonghoon;Hong, Ik-seon;Jo, Gyeongbok;Song, Hosub;Min, Kyoung Wook;Yi, Yu
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • The Ozone Dynamics Investigation Nano-Satellite (ODIN) is a CubeSat design proposed by Chungnam National University as contribution to the CubeSat Competition 2019 sponsored by the Korean Aerospace Research Institute (KARI). The main objectives of ODIN are (1) to observe the polar ozone column density (latitude range of 60° to 80° in both hemispheres) and (2) to investigate the chemical dynamics between stratospheric ozone and ozone depleting substances (ODSs) through spectroscopy of the terrestrial atmosphere. For the operation of ODIN, a highly efficient power system designed for the specific orbit is required. We present the conceptual structural design of ODIN and an analysis of power generation in a sun synchronous orbit (SSO) using two different configurations of 3U solar panels (a deployed model and a non-deployed model). The deployed solar panel model generates 189.7 W through one day which consists of 14 orbit cycles, while the non-deployed solar panel model generates 152.6 W. Both models generate enough power for ODIN and the calculation suggests that the deployed solar panel model can generate slightly more power than the non-deployed solar panel model in a single orbit cycle. We eventually selected the non-deployed solar panel model for our design because of its robustness against vibration during the launch sequence and the capability of stable power generation through a whole day cycle.

Environmental Monitoring and Forecasting Using Advanced Remote Sensing Approaches (최신 원격탐사 기법을 이용한 지구환경 모니터링 및 예측)

  • Seonyoung Park;Ahram Song;Yangwon Lee;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.885-890
    • /
    • 2023
  • As satellite technology progresses, a growing number of satellites-like CubeSat and radar satellites-are available with a higher spectral and spatial resolutions than previous. National initiatives used to be the main force behind satellite development, but current trendsindicate that private enterprises are also actively exploring and developing new satellite technologies. This special issue examines the recent research results and advanced technology in remote sensing approaches for Earth environment analysis. These results provide important information for the development of satellite sensors in the future and are of great interest to researchers working with artificial intelligence in thisfield. The special issue introduces the latest advances in remote sensing technology and highlights studies that make use of data to monitor and forecast Earth's environment. The objective is to provide direction for the future of remote sensing research.