• Title/Summary/Keyword: CuNi

Search Result 2,482, Processing Time 0.027 seconds

Synthesis of wagnerite and its analogues for ceramic pigments (I) (도자기 유약용 Wagnerite의 합성(I))

  • Chung, Yong-Sun;Auh, Keun-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.640-647
    • /
    • 1997
  • Wagnerite ($Mg_2PO_4F)$ was successfully synthesized in a sealed platinum tube and the complete substitutions of $Co^{++}, Ni^{++}, Cu^{++} \;and\;Zn^{++}$for Mg were made in the wagnerite structure. Wagnerite did not decompose until it reached its melting temperature. It was observed that wagnerite underwent only one inversion at $1255^{\circ}C$, prior to melting at $1340^{\circ}C$. The lattice parameters of wagnerites were linearly increased by the substitutions of $Co^{++}$ and $Zn^{++}$ and decreased by the substitutions of $Ni^{++}$ and $Cu^{++}$. The substitutions of wagnerite with $Co^{++}, Ni^{++}$ and $Cu^{++}$ resulted in purple, orange and green colors, respectively, The colors of pigments became more intense and suitable for coloring of glazes and plastics as the amount of metal ions increased.

  • PDF

Determination of Metals of Coal and Respirable Coal Dust in Gangneung and Taebaek Coal Mines (강릉·태백지역 석탄광산의 탄 및 호흡성 탄분진중 금속 농도 비교에 관한 연구)

  • Kim, Hae Jeong;Choi, Ho Chun;Chung, Ho Keun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.1 no.1
    • /
    • pp.82-88
    • /
    • 1991
  • Determination of Cu, Fe, Ni, Pb, and Zn concentrations in coal and respirable coal dust were performed by atomic absorption spectrophotometry. The coal samples of 18 coal mines in Gangneung area were collected and 25 coal mines in Taebaek area. Crushed coal samples were divided into three mesh sizes. The results were as follows : 1. Metal concentrations of coals in Gangneung area by sieve sizes( -100/+200 mesh, -200/+325 mesh, -325 mesh) were as follows: Cu ; 20, 18, 19, Fe ; 1,830, 1,765, 1,107, Pb ; 6, 8, 14, Ni ; 17, 17, 14, Zn ; 4, 2, $4{\mu}g/g$, respectively. Metal concentrations in coals in Taebaek area by sieve sizes(-100/+200 mesh, -200/+325 mesh, -325 mesh) were as follows: Cu ; 30, 32, 26, Fe ; 1,741, 1,822, 1,773, Pb ; 8, 9, 7, Ni ; 13, 13, 13, Zn ; 8, 5, $4{\mu}g/g$, respectively. There were not significant differences of Cu, Fe, Ni, Pb, and Zn concentrations of coals statistically in Gangneung and Taebaek area by sieve size. 2. Metal concentrations of coals in Gangneung and Taeback area were as follows : Cu ; 19, 30, Fe ; 1,514, 1,778, Pb ; 9, 8, Ni ; 16, 13, Zn ; 3, $6{\mu}g/g$, respectively. Differences of copper and zinc concentrations of coal samples were significant between Gangneung and Taebaek area, but those of iron, nickel and lead concentrations were not significant. 3. Copper, iron, lead, nickel and zinc concentrations of coals and respirable coal dust were as follows : Cu ; 30, 6, Fe ; 1,779, 5,075, Pb ; 8, 7,814, Ni ; 13, 5,681, Zn ; 5, $134{\mu}g/g$, respectively. Differences of nickel, lead and zinc concentrations were significant between coals and respirable coal dust but those of copper and iron concentrations were not significant.

  • PDF

Effect of Metal Ions on the Sedimentation of Humic Acid (흄산의 침적에 미치는 금속이온의 영향)

  • Park, Yeong Jae;Park, Kyoung Kyun;Chun, Kwan Sik
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.50-58
    • /
    • 1996
  • In the presence of metal ions(Co(Ⅱ), Ni(Ⅱ), Sr(Ⅱ), Cu(Ⅱ), Fe(Ⅲ), U(Ⅵ)), the sedimentation of humic acid was increased at constant pH with increasing metal concentration and the strength was increased in the following order: Sr < Ni < Co < Cu < Fe < U. At constant metal concentration, Cu(Ⅱ), Ni(Ⅱ), and Co(Ⅱ) ions caused an increase in sedimentation of humic acid as the solution pH increased, whereas Fe(Ⅲ) and U(Ⅵ) ions caused a decrease. Sr(Ⅱ) ions did not affect the sedimentation even with the variation of pH. The analysis of FT-IR spectra for the sediments prepared from the reaction between humic acid and metal ions showed that metal ions were bound to humic acid to form complexes, suggesting that the metal complexation plays an important role in the sedimentation of humic acid.

  • PDF

Effect of Reflow Variables on the Characteristic of BGA Soldering (리플로 공정변수가 BGA 솔더링 특성에 미치는 영향)

  • 한현주;박재용;정재필;강춘식
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.3
    • /
    • pp.9-18
    • /
    • 1999
  • In this study, Metallugical properties between Sn-3.5Ag, Sn-37Pb eutectic solders and Au/Ni/cu substrate according to time span above the melting point were investigated. A conventional reflow soldering machine wert used for this study and time span above the melting point was determined by changing peak soldering temperature and conveyor speed. As results, scallop type intermetallic compounds of $Ni_3Sn_4$ were formed at joint interface and no Cu-Sn compounds were found at all; Ni layer performed as a barrier for Cu diffusion. As the peak soldering temperature increased, thickness of the intermetallic compound layer increased; maximum thickness of the scallop-layer was 2.2$\mu\textrm{m}$. The shape of scallops were transformed from hemi-sphere type to elliptical shape with smaller size. Micro-hardness of the solder joint decreased as the eutectic structure of Sn-3.5Ag and Sn-37Pb increased.

  • PDF

A Study on the Heavy Metal Content of Permanent Wave Products (퍼머넌트 웨이브제의 중금속 함량에 관한 연구)

  • Yoo, Tai-Soon;Jang, Nam-Soon;Jung, Yeon
    • Journal of the Korean Society of Fashion and Beauty
    • /
    • v.2 no.2 s.2
    • /
    • pp.93-100
    • /
    • 2004
  • This study is to measure the heavy metal content of permanent wave products which on marketing correctly as estimating the extent of exposure by a hair permanent wave scientifically. We would like to prevent an affair from arising health obstruction as to the heavy metal who is using those and also show the basic data for proposing the new standard. The results were as follows.: in case of the average heavy metal content for a wave type thioglycol acid ingredient includes 1.61ppm(Pb), 0.03ppm(Cd), 0.05ppm(Ni), 0.27ppm(Mn), 0.82ppm(Cu) and those were recognized the significant gap between products all the heavy metals. In case of a cysteine acid ingredient includes 0.86ppm(Pb), 0.01ppm(Cd), 0.05ppm(Ni), 0.20ppm(Mn) and 0.66ppm(Cu) and those were recognized the significant gap between products except a nickel. Straight type of permanent wave reductant includes 2.11ppm(Pb), 0.01ppm(Cd), 0.27ppm(Ni), 0.66ppm(Mn), 2.53ppm(Cu) and those were recognized the significant gap between products all the heavy metals. Permanent wave reducing agent includes 1.43ppm(Pb), 0.01ppm(Cd), 0.09ppm(Ni), 0.66ppm(Mn), 0.75ppm(Cu) and those were approved the significant gap between products except a cadmium. Exposure level of the heavy metal contents per onetime permanent waving were 242.3ppm(Pb), 2.5ppm(Cd), 17.7ppm(Ni), 89.0ppm(Mn), 174.7ppm(Cu).

  • PDF

Variations of the Heavy Metal Contents in Human Hairs According to Permanent Wave Manipulation (퍼머넌트 웨이브 시술에 따른 모발의 중금속 함량의 변화)

  • Jung, Yeon
    • Fashion & Textile Research Journal
    • /
    • v.4 no.3
    • /
    • pp.266-272
    • /
    • 2002
  • This research is compared and analyzed variations of the heavy metal contents in human hairs according to treating permanent wave manipulation before and after and permanent wave agents. This is the survey of women's hairs in 19 years old. On the basis of this we would like to analyze a extend of exposing of heavy metal scientifically. Also, we would to show a basic data for the permitted limits of heavy metal to keep the healthy hair The conclusion is as follows.; Mean contents of heavy metal in hairs is 2.11 ppm (Pb), 0.25 ppm (Cd), 2.62 ppm (Ni), 256 ppm (Zn), 8.45 ppm (Cu). In reducing agents (processing lotions) of perm, 1.50 ppm (Pb), 0.03 ppm (Cd), 0.05 ppm (Ni), 15.45 ppm (Zn), 0.86 ppm (Cu) in a perm (S), 2.30 ppm (Pb), 0.05 ppm (Cd), 0.05 ppm (Ni), 13.05 ppm (Zn), 0.65 ppm (Cu) in a perm (T). In oxidizing agents (neutralizer) of perm, 1.40 ppm (Pb), 0.03 ppm (Cd), 0.09 ppm (Ni), 9.05 ppm (Zn), 0.65 ppm (Cu) in a perm (S), 1.50 ppm (Pb), 0.02 ppm (Cd), 0.16 ppm (Ni), 8.00 ppm (Zn), 0.85 ppm (Cu) in a perm (T). Mean contents of lead(Pb) didn't show significant differences according to treating cysteine perm agents, showed it according to 3 treating thioglycolic acid perm agents (p<0.05). Mean contents of cadmium(Cd) showed significant differences (p<0.001) according to 2 treating both perm agents. Mean contents of nickel (Ni) showed neither. Mean contents of zinc (Zn) showed significant differences according to 2 treating cysteine perm agents (p<0.001) and 1 treating thioglycolic acid perm agents (p<0.01). Mean contents of copper (Cu) didn't show significant differences according to treating cysteine perm agents, showed it according to 1 treating thioglycolic acid perm agents (p<0.001).

Stabilization of Heavy Metals in Contaminated Marine Sediment using Bentonite (벤토나이트에 의한 해양오염퇴적물 내 중금속 안정화 특성)

  • Shin, Woo-Seok;Na, Kyu-Ri;Kim, Young-Kee
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.655-661
    • /
    • 2014
  • In this study, stabilization treatment of heavy metals such as Ni, Cu, Pb, and Zn in contaminated marine sediment was achieved using bentonite. Stabilization experiment was accomplished by wet-curing with bentonite for 150 days. From the sequential extraction results of heavy metals, it was observed that the easily extractable fraction (exchangeable, carbonate, and oxides forms) of Ni, Cu, Pb, and Zn in a treated sediment decreased to 8.5%, 5.6%, 19.2%, and 28.2%, respectively, compared with untreated sediment. Moreover, the TCLP(Toxicity Characteristic Leaching Procedure) results evaluating efficiency of extraction reduction of heavy metals showed that extraction of heavy metals reduced drastically to 95.7%, 96.8%, 99.2%, 85.9% for Ni, Cu, Pb, and Zn by stabilization when compared to untreated sediment. From these results, we can confirm that bentonite as a capping material exhibits good stabilization of heavy metals in contaminated marine sediment.

The co-effect of $TiO_2$, Cu and Ni Powders for Enhancing the Hydrogen Generation Efficiency using Plasma Technology (플라즈마 반응기의 수소발생에 미치는 $TiO_2$, Cu, Ni 촉매제 영향)

  • Park, Jae-Yoon;Kim, Jong-Suk;Jung, Jang-Gun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1599-1605
    • /
    • 2008
  • The research was conducted in order to improve the hydrogen generation efficiency of the electrical plasma technology from tap water by using $TiO_2$ photocatalyst, mixed Cu - $TiO_2$ powder, and mixed Ni - $TiO_2$ powder as the catalysts. Experiments were performed with the pulsed power and nitrogen carrier gas. The result has shown that the hydrogen concentration with the presence of $TiO_2$ powder was created higher than that of without using photocatalyst. The hydrogen concentration with using $TiO_2$ was 3012ppm corresponding to the applied voltage of 16kV, while it without using the $TiO_2$ was 1464ppm at the same condition . The effect of $TiO_2$ powder was strongly detected at the applied voltages of 15kV and 16kV. This phenomena might be resulted from the co-effect of the pulsed power discharge and the activated state of $TiO_2$ photocatalyst. The co-effect of the mixed catalysts such as Cu-$TiO_2$ and Ni-$TiO_2$ (the mixed photocatalyst $TiO_2$ and transition metals) were also investigated. The experimental results showed that, Cu and Ni powder dopants were greatly enhancing the activity of the $TiO_2$ photocatalyst. Under these experimental conditions the extremely high hydrogen concentrations at the optimal point were produced as 4089ppm and 6630ppm, respectively.

Fabrication and Fault Test Results of Bi-2212/Cu-Ni Tubes for Superconducting Fault Current Limiting Elements (Bi-2212/Cu-Ni 튜브로 제작한 초전도 한류소자의 단락사고시험 결과)

  • Oh, S.Y.;Yim, S.W.;Yu, S.D.;Kim, H.R.;Hyun, O.B.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.45-49
    • /
    • 2008
  • For the development of superconducting fault current limiters (SFCLs), fault current limiting elements were fabricated out of Bi-2212 bulk tubes and tested. The SFCL elements consisted of tube shaped Bi-2212 bulks and metal shunts for the stabilizers. Firstly, the Bi-2212 bulk tubes were processed based on a design of monofilar coils in order to acquire large resistance and high voltage rating. 300 mm-long Bi-2212 tubes were designed to have the current path of 410 cm in length with 24 turns and 41 mm in diameter. The processed monofilar coil, as designed, had 300 A $I_c$ at 77 K. The fabricated superconducting monofilar coils were affixed to Cu-Ni alloy as that of stabilizers. The Cu-Ni alloys were processed to have the same shape of the superconducting monofilar coils. The Cu-Ni coil had resistivity of 32 ${\mu}{\Omega}$-cm at 77 K and 37 ${\mu}{\Omega}$-cm at 300 K. The metal shunts were attached to the outside of the Bi-2212 monofilar coil by a soldering technique. After the terminals made of copper were attached to both ends of the superconductor-metal shunt composite, the gap between the turns and the surface of the elements was filled with an epoxy and a dense mesh made of FRP in order to enhance the mechanical strength. The completed SFCL elements went through fault tests, and we confirmed that the voltage rating of 143 $V_{rms}$ (E =0.35 $V_{rms}$/cm) could be accomplished.

  • PDF

A Study on Contact Resistance Properties of Metal/CVD Graphene (화학기상증착법을 이용하여 합성한 그래핀과 금속의 접촉저항 특성 연구)

  • Dong Yeong Kim;Haneul Jeong;Sang Hyun Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.60-64
    • /
    • 2023
  • In this study, the electrical contact resistance characteristics between graphene and metals, which is one of important factors for the performance of graphene-based devices, were compared. High-quality graphene was synthesized by chemical vapor deposition (CVD) method, and Al, Cu, Ni, and Ti as electrode materials were deposited on the graphene surface with equal thickness of 50 nm. The contact resistances of graphene transferred to SiO2/Si substrates and metals were measured by the transfer length method (TLM), and the average contact resistances of Al, Cu, Ni, and Ti were found to be 345 Ω, 553 Ω, 110 Ω, and 174 Ω, respectively. It was found that Ni and Ti, which form chemical bonds with graphene, have relatively lower contact resistances compared to Al and Cu, which have physical adsorption properties. The results of this study on the electrical properties between graphene and metals are expected to contribute to the realization of high-performance graphene-based devices including electronics, optoelectronic devices, and sensors by forming low contact resistance with electrodes.