• Title/Summary/Keyword: CuAg

Search Result 1,191, Processing Time 0.032 seconds

Ingredient analysis of 태환이식 excavated from 황남대총 남분 and the characteristics (황남대총 남분출토 태환이식의 성분분석과 그 특징)

  • Ju, Jin-ok;Kang, Dai-il
    • 보존과학연구
    • /
    • s.27
    • /
    • pp.129-143
    • /
    • 2006
  • This report is on a scientific investigation of 3 pairs of 금제태환이식 which were excavated from 황남대총 납분. 태환 is a main part of 태환이식 and it could be classified with 4 types in how to produce, especially how many the golden petal was used. In this investigation, they,3 pairs of 금제태환이식 from 황남대총 남분, were in 3 of 4 types and also I could find that this result was not on the technical progress but on the ingredient of metal. Also, In the result of ingredient assay, I could find that although they were in one pair of 태환 one piece was made in gold and silver alloy and the other piece was made in 99.5 percent of pure Ag with gold amalgam plating. And the another pair was getting red from others because of making in 33percent of Ag and 77 percent of gold, high Ag content. And All pairs of 태환 have a small quantity of Copper. As above, although they are one pair they have the difference of how to produce and the difference of volume and ingredient content, it means that these pairs of 태환 from 황남대총 남분 were made in pressure of time. From now on, if we investigate the ingredient and how to produce of 태환이식 in the local comparative analysis, namely natural science method, we can find out the metal art technique and the social aspect of the ancient times as not analogical inference but scientific basis.

  • PDF

Genetic Environments of Dongwon Au-Ag-bearing Hydrothermal Vein Deposit (동원 함 금-은 열수 맥상광상의 생성환경)

  • Lee, Sunjin;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.753-765
    • /
    • 2021
  • The Dongwon Au-Ag deposit is located within the Paleozoic Taebaeksan province, Okcheon belt. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz veins; stage II, barren carbonate veins) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages(early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite with minor magnetite, pyrrhotite and arsenopyrite; middle, characterized by introduction of electrum and base-metal sulfides with minor sulfosalts; late, marked by argentite, Cu-As (and/or Sb) and Ag-Sb sulfosalts with base-metal sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥430℃) and later lower temperatures (≤230℃) from fluids with salinities between 6.0 to 0.4 wt. percent equiv. NaCl. The relationship of salinity and homogenization temperature suggest that ore mineralization at Dongwon was deposited mainly due to fluid boiling, cooling and dilution via influx of cooler, more dilute meteoric waters. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Dongwon hydrothermal system with increasing paragenetic time. The Dongwon deposit may represents a Korean-type and/or Au-Ag type mesothermal/epithermal gold-silver deposit.

Study on Sn-Ag-Fe Transient Liquid Phase Bonding for Application to Electric Vehicles Power Modules (전기자동차용 파워모듈 적용을 위한 Sn-Ag-Fe TLP (Transient Liquid Phase) 접합에 관한 연구)

  • Byungwoo Kim;Hyeri Go;Gyeongyeong Cheon;Yong-Ho Ko;Yoonchul Sohn
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.61-68
    • /
    • 2023
  • In this study, Sn-3.5Ag-15.0Fe composite solder was manufactured and applied to TLP bonding to change the entire joint into a Sn-Fe IMC(intermetallic compound), thereby applying it as a high-temperature solder. The FeSn2 IMC formed during the bonding process has a high melting point of 513℃, so it can be stably applied to power modules for power semiconductors where the temperature rises up to 280℃ during use. As a result of applying ENIG surface treatment to both the chip and substrate, a multi-layer IMC structure of Ni3Sn4/FeSn2/Ni3Sn4 was formed at the joint. During the shear test, the fracture path showed that cracks developed at the Ni3Sn4/FeSn2 interface and then propagated into FeSn2. After 2hours of the TLP joining process, a shear strength of over 30 MPa was obtained, and in particular, there was no decrease in strength at all even in a shear test at 200℃. The results of this study can be expected to lead to materials and processes that can be applied to power modules for electric vehicles, which are being actively researched recently.

Cu Electroplating on the Si Wafer and Reliability Assessment of Low Alpha Solder Bump for 3-D Packaging (3차원 실장용 실리콘 웨이퍼 Cu 전해도금 및 로우알파솔더 범프의 신뢰성 평가)

  • Jung, Do Hyun;Lee, Joon Hyung;Jung, Jae Pil
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.123-123
    • /
    • 2012
  • 최근 연구되고 있는 TSV(Through Silicon Via) 기술은 Si 웨이퍼 상에 직접 전기적 연결 통로인 관통홀을 형성하는 방법으로 칩간 연결거리를 최소화 할 수 있으며, 부피의 감소, 연결부 단축에 따른 빠른 신호 전달을 가능하게 한다. 이러한 TSV 기술은 최근의 초경량화와 고집적화로 대표되는 전자제품의 요구를 만족시킬 수 있는 차세대 실장법으로 기대를 모으고 있다. 한편, 납땜 재료의 주 원료인 주석은 주로 반도체 소자의 제조, 반도체 칩과 기판의 접합 및 플립 칩 (Flip Chip) 제조시의 범프 형성 등 반도체용 배선재료에 널리 사용되고 있다. 최근에는 납의 유해성 때문에 대부분의 전자제품은 무연솔더를 이용하여 제조되고 있지만, 주석을 이용한 반도체 소자가 고밀도화, 고 용량화 및 미세피치(Fine Pitch)화 되고 있기 때문에, 반도체 칩의 근방에 배치된 주석으로부터 많은 알파 방사선이 방출되어 메모리 셀의 정보를 유실시키는 소프트 에러 (Soft Error)가 발생되는 위험이 많아지고 있다. 이로 인해, 반도체 소자 및 납땜 재료의 주 원료인 주석의 고순도화가 요구되고 있으며, 특히 알파 방사선의 방출이 낮은 로우알파솔더 (Low Alpha Solder)가 요구되고 있다. 이에 따라 본 연구는 4인치 실리콘 웨이퍼상에 직경 $60{\mu}m$, 깊이 $120{\mu}m$의 비아홀을 형성하고, 비아 홀 내에 기능 박막증착 및 전해도금을 이용하여 전도성 물질인 Cu를 충전한 후 직경 $80{\mu}m$의 로우알파 Sn-1.0Ag-0.5Cu 솔더를 접합 한 후, 접합부 신뢰성 평가를 수행을 위해 고속 전단시험을 실시하였다. 비아 홀 내 미세구조와 범프의 형상 및 전단시험 후 파괴모드의 분석은 FE-SEM (Field Emission Scanning Electron Microscope)을 이용하여 관찰하였다. 연구 결과 비아의 입구 막힘이나 보이드(Void)와 같은 결함 없이 Cu를 충전하였으며, 고속전단의 경우는 전단 속도가 증가할수록 취성파괴가 증가하는 경향을 보였다. 본 연구를 통하여 전해도금을 이용한 비아 홀 내 Cu의 고속 충전 및 로우알파 솔더 볼의 범프 형성이 가능하였으며, 이로 인한 전자제품의 소프트에러의 감소가 기대된다.

  • PDF

Formation of Ni / Cu Electrode for Crystalline Si Solar Cell Using Light Induced Electrode Plating (광유도 전해 도금법을 이용한 결정질 실리콘 태양전지용 Ni/Cu 전극 형성)

  • Hong, Hyekwon;Park, Jeongeun;Cho, Youngho;Kim, Dongsik;Lim, Donggun;Song, Woochang
    • Journal of Institute of Convergence Technology
    • /
    • v.8 no.1
    • /
    • pp.33-39
    • /
    • 2018
  • The screen printing method for forming the electrode by applying the existing pressure is difficult to apply to thin wafers, and since expensive Ag paste is used, it is difficult to solve the problem of cost reduction. This can solve both of the problems by forming the front electrode using a plating method applicable to a thin wafer. In this paper, the process conditions of electrode formation are optimized by using LIEP (Light-Induced Electrode Plating). Experiments were conducted by varying the Ni plating bath temperature $40{\sim}70^{\circ}C$, the applied current 5 ~ 15 mA, and the plating process time 5 ~ 20 min. As a result of the experiment, it was confirmed that the optimal condition of the structural characteristics was obtained at the plating bath temperature of $60^{\circ}C$, 15 mA, and the process time of 20 min. The Cu LIEP process conditions, experiments were conducted with Cu plating bath temperature $40{\sim}70^{\circ}C$, applied voltage 5 ~ 15 V, plating process time 2 ~ 15 min. As a result of the experiment, it was confirmed that the optimum conditions were obtained as a result of electrical and structural characteristics at the plating bath temperature of $60^{\circ}C$ and applied current of 15 V and process time of 15 min. In order to form Ni silicide, the firing process time was fixed to 2 min and the temperature was changed to $310^{\circ}C$, $330^{\circ}C$, $350^{\circ}C$, and post contact annealing was performed. As a result, the lowest contact resistance value of $2.76{\Omega}$ was obtained at the firing temperature of $310^{\circ}C$. The contact resistivity of $1.07m{\Omega}cm^2$ can be calculated from the conditionally optimized sample. With the plating method using Ni / Cu, the efficiency of the solar cell can be expected to increase due to the increase of the electric conductivity and the decrease of the resistance component in the production of the solar cell, and the application to the thin wafer can be expected.

Magnetotransport Properties of Co-Fe/Al-O/Co-Fe Tunnel Junctions Oxidized with Microwave Excited Plasma

  • Nishikawa, Kazuhiro;Orata, Satoshi;Shoyama, Toshihiro;Cho, Wan-Sick;Yoon, Tae-Sick;Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.63-71
    • /
    • 2002
  • Three fabrication techniques for forming thin barrier layer with uniform thickness and large barrier height in magnetic tunnel junction (MTJ) are discussed. First, the effect of immiscible element addition to Cu layer, a high conducting layer generally placed under the MTJ, is investigated in order to reduce the surface roughness of the bottom ferromagnetic layer, on which the barrier is formed. The Ag addition to the Cu layer successfully realizes the smooth surface of the ferromagnetic layer because of the suppression of the grain growth of Cu. Second, a new plasma source, characterized as low electron energy of 1 eV and high density of $10^{12}$ $cm^{-3}$, is introduced to the Al oxidation process in MTJ fabrication in order to reduce damages to the barrier layer by the ion-bombardment. The magnetotransport properties of the MTJs are investigated as a function of the annealing temperature. As a peculiar feature, the monotonous decrease of resistance area product (RA) is observed with increasing the annealing temperature. The decrease of the RA is due to the decrease of the effective barrier width. Third, the influence of the mixed inert gas species for plasma oxidization process of metallic Al layer on the tunnel magnetoresistance (TMR) was investigated. By the use of Kr-O$_2$ plasma for Al oxidation process, a 58.8 % of MR ratio was obtained at room temperature after annealing the junction at $300{^{\circ}C}$, while the achieved TMR ratio of the MTJ fabricated with usual Ar-$0_2$ plasma remained 48.4%. A faster oxidization rate of the Al layer by using Kr-O$_2$ plasma is a possible cause to prevent the over oxidization of Al layer and to realize a large magnetoresistance.

Effects of the Electroless Ni-P Thickness and Assembly Process on Solder Ball Joint Reliability (무전해 Ni-P 두께와 Assembly Process가 Solder Ball Joint의 신뢰성에 미치는 영향)

  • Lee, Ji-Hye;Huh, Seok-Hwan;Jung, Gi-Ho;Ham, Suk-Jin
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.60-67
    • /
    • 2014
  • The ability of electronic packages and assemblies to resist solder joint failure is becoming a growing concern. This paper reports on a study of high speed shear energy of Sn-4.0wt%Ag-0.5wt%Cu (SAC405) solder with different electroless Ni-P thickness, with $HNO_3$ vapor's status, and with various pre-conditions. A high speed shear testing of solder joints was conducted to find a relationship between the thickness of Ni-P deposit and the brittle fracture in electroless Ni-P deposit/SAC405 solder interconnection. A focused ion beam (FIB) was used to polish the cross sections to reveal details of the microstructure of the fractured pad surface with and without $HNO_3$ vapor treatment. A scanning electron microscopy (SEM) and an energy dispersive x-ray analysis (EDS) confirmed that there were three intermetallic compound (IMC) layers at the SAC405 solder joint interface: $(Ni,Cu)_3Sn_4$ layer, $(Ni,Cu)_2SnP$ layer, and $(Ni,Sn)_3P$ layer. The high speed shear energy of SAC405 solder joint with $3{\mu}m$ Ni-P deposit was found to be lower in pre-condition level#2, compared to that of $6{\mu}m$ Ni-P deposit. Results of focused ion beam and energy dispersive x-ray analysis of the fractured pad surfaces support the suggestion that the brittle fracture of $3{\mu}m$ Ni-P deposit is the result of Ni corrosion in the pre-condition level#2 and the $HNO_3$ vapor treatment.

Sol-Gel 법으로 제작된 정공 수송층과 결합한 유기 태양전지 특성 연구

  • Lee, Se-Han;Choe, Jeol-Jun;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.453-453
    • /
    • 2013
  • 유기 태양전지는 저비용으로 제작이 가능하고 제작이 용이한 장점을 가지고 있으므로 많은 그룹에서 관심을 가지고 있다. 정공 수송층으로 사용되는 PEDOT:PSS는 많이 사용되지만 강한 산성 특성 때문에 ITO 전극에 식각이 되므로 문제가 있다. 그러므로 산화물 반도체 $WO_3$, $MoO_3$, 그리고 $V_2O_3$ 등이 태양전지에 많이 만들어지고 있다. 특히 copper oxide는 높은 광흡수율을 가지고 있으므로 태양전지에 사용하는 데 많은 기대되는 물질이다. Copper oxide 박막은 열증착 법, 스프레이 필로시스, 전기화학 증착, 화학증착법, 그리고 솔-젤법 등 다양한 증착 방법이 있다. 넓은 면적의 소자를 제작할 경우 솔-젤 방법은 기존의 증착법에 비해 낮은 비용으로 제작, 높은 성장율, 그리고 높은 기계적 탄력성의 장점이 있다. 솔-젤법으로 만든 copper oxide는 P3HT의 HOMO (high occupied molecular orbital)와 비슷한 위치에 접하고 있으므로 정공수송층으로 적합하다. 본 연구에서 제작된 태양전지의 구조는 ITO/P3HT:PCBM/CuxO로 구성되어 있다. ITO가 $10{\Omega}$/sq의비저항을 가지고 있었고 UV 처리를 하였다. 그 위에 P3HT:PCBM (1:0.8 weight)를 스핀 코팅하였다. 마지막으로 0.1 M $Cu_xO$용액은 Cu (II) acetate monohydrate를 소스로 2-methoxyethanol ($C_3H_8O_2$)의 용제와 안정제로 monoethanolamine ($C_2H_7NO$)을 섞어서 만들었다. 그리고 P3HT:PCBM 위에 스핀 코팅하였고 열증착 방법으로 전극인 Ag 을 증착하여 최종 소자를 만들었다. Cu(II) acetate의 소스로 제작된 박막의 투과율 측정을 통해 에너지 밴드갭을 구할 수 있었다. Copper oxide 박막은 다결정구조 이므로 다중 밴드갭으로 구성되어지는 것을 알 수 있었다. 최종적으로 만들어진 소자를 열처리를 통해 소자 특성을 조사했더니 250도에서 가장 좋은 결과를 얻을 수 있었다.

  • PDF

Sedimentological Characteristics of the Surface Sediments in the Southern Sea off Cheju Island, Korea. (제주남방해역 표층퇴적물의 특성)

  • 윤정수;고기원
    • 한국해양학회지
    • /
    • v.22 no.3
    • /
    • pp.130-142
    • /
    • 1987
  • Sedimentological characteristics of the surface sediments in the southern sea off Cheju Island are described from analyses of bottom sediments. The sediments are subdivided into seven textural classes, muddy sand, slightly gravelly muddy sand, sand, clayey sand, sandy clay, sandymud, silty sand. Sand-size sediments are distributed in the southeastern part and/or around the Island, whereas sandy and muddy sediments are mainly distributed in the central and southern parts of the study area. A small portion of mud patch is located in the southwestern part of the area. According to the textural parameters analysis, sediments in the study area are poorly sorted(av.2.52 ), positive skewed(av.1.61 ), leptokurtic(av.1.74 ), transported by saltation and/or suspension, and roundness of quartz is varied from angular to surrounded, which suggesting that the depositional environment is not simple. The calcium carbonate content is on the average 26.99%, and commonly abundant in sand-size sediments, whereas organic matter content in the bulk sediment is on the average 6.70% and usually dominant in fine-grained sediments.Light minerals consist of quartz(av56.01%),Na-Ca feldspar(av.6.15%),K-feldspar(av.9.22%) and rock fragments(av28.11%).The contect onquartz and K-feldspar increases continuously away from the Cheju Island. As a result of geochemical analysis,concentrations of the elements are as follow:Zn:19.42-43.52 ppm (av.30.67ppm),Mn:50-304 ppm(av139.39ppm),Cr:3.54-10.68ppm(av6.50ppm),Pb:5.52-41.68ppm(av.15.60ppm), Co:7.08-14.68ppm (av.10.78ppm),Ni:19.70-42.42ppm(av.29.57ppm),Cu:3.14-9.12ppm(av.5.14ppm),Fe:0.48-2.08% (av1.22%),Ca:0.32-13.16%(av6.60%),Al:0.06-0.08%(av.0.27%),Mg:0.12-0.76%(av.0.53%)na:0.11-0.51%(av.0.36%) Ag:0.48-4.08ppm(av.1.22ppm).Among these elements,the content of Zn,Cu,Cr,Mn,Fe,Al,Mg,Pb and Na increase toward the southwestern area,while the content of Ca and Ag SHOWS the reversed distribution trend.Such a distribution pattern seems to imply that spatial distrivution of heavy metals is closely related to the variation in grain size. X-ray diffractogram show that the minerals in clay from the southwestern mud patch are illite ,chlorite, kaolinte,feldspar and calcite.The bulk of illite in th mud zone is believed to be originated from Huanghe and Yangytze River.The mud patch in this region contains the diagnostic calcite peak,and the concentration of Ca,ni,Pb,Ag are similar to Huanghe type,which indicates that the greater part of these clay fractions may have been derived from the Huanghe River.

  • PDF

Genetic Environments of Au-Ag-bearing Geumhwa Hydrothermal Vein Deposit (함 금-은 금화 열수 맥상광상의 생성환경)

  • Lee, Sunjin;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.49-60
    • /
    • 2021
  • The Geumhwa Au-Ag deposit is located within the Cretaceous Gyeongsang basin. Mineral paragenesis can be divided into two stages (stage I and II) by major tectonic fracturing. Stage II is economically barren. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages(early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early substage, marked by deposition of pyrite with minor wolframite; middle substage, characterized by introduction of electrum and base-metal sulfides with Cu-As and/or Cu-Sb sulfosalts; late substage, marked by hematite and Bi-sulfosalts with secondary minerals. Changes in vein mineralogy reflect decreases in temperature and sulfur fugacity with a concomitant increase in oxygen fugacity. Fluid inclusion data indicate progressive decreases in temperature and salinity within each substage with increasing paragenetic time. During the early portion of stage I, high-temperature (≥410℃), high-salinity fluids (up to ≈44 equiv. wt. % NaCl) formed by condensation during decompression of a magmatic vapor phase. During waning of early substage, high-temperature, high-salinity fluids gave way to progressively cooler, more dilute fluids associated with main Au-Ag mineralization (middle) and finally to ≈180℃ and ≥0.7 equiv. wt. % NaCl fluids associated with hematite and sulfosalts (± secondary) mineralization (late substage). These trends are interpreted to indicate progressive mixing of high- and medium to low-salinity hydrothermal fluids with cooler, more dilute, oxidizing meteoric waters. The Geumhwa Au-Ag deposit may represent a vein-type system transitional between porphyry-type and epithermal-type.