• Title/Summary/Keyword: Cu-catalyst

Search Result 356, Processing Time 0.022 seconds

Synthesis of p-Phenylenediamine (PPD) using Supercritical Ammonia (초임계 암모니아를 이용한 p-Phenylenediamine(PPD) 합성 및 특성연구)

  • Cho, Hang-Kyu;Lim, Jong Sung
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.53-56
    • /
    • 2015
  • In this study, investigated the synthesis method of p-Phenylenediamine (PPD) by amination of p-Diiodobenzene (PDIB) under supercritical ammonia and CuI catalyst conditions. We examined the effects of various process variables (e.g., reaction temperature, pressure, amount of ammonia inserted, amount of catalyst inserted, and reaction time) on the production yield of PPD by analyzing the Gas Chromatography (GC). The experimental results demonstrated that PPD was not produced under non-catalyst conditions, and PPD production yield increased with increasing temperature, pressure, amount of catalyst inserted, and reaction time. However, for the reaction temperature case, it was found that $200^{\circ}C$ was the optimal temperature, because thermal degradation of PPD occurred above $250^{\circ}C$. In addition, we confirmed the structure of PPD and the bonding characteristics of the amine group via FT-IR and H-NMR analysis.

Simultaneous Removal of NOx/SOx by Catalyst-loaded Cordierite Porous Filter (촉매 담지 코디어라이트 다공성 필터의 NOx/SOx 동시제거에 대한 연구)

  • Lee, Shi-Hee;Chung, Koo-Chun;Kim, Jee-Woong;Shin, Min-Chul;Lee, Hee-Soo
    • Analytical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.256-262
    • /
    • 2002
  • After porous filters were manufactured using cordierite powder whose mean paricle size was 200${\mu}m$, they were loaded with catalysts such as $V_2O_5$, CuO and $LaCoO_3$ by vacuum impregnation method. And the NOx/SOx simultaneous removal efficiency was measured by passing NO and $SO_2$ through catalyst-loaded ceramic filters. The cordierite porous filters had the apparent porosity of 61.6%, the compressive strength of 12.3 MPa and the pressure drop of 147 pa at the face velocity of 5 cm/sec. According to the analysis of NO/$SO_2$ simultaneous removal efficiency, perovskite $LaCoO_3$ catalyst was the most efficient for the simultaneous NO and $SO_2$ removal. The $LaCoO_3$ catalyst-loaded filter could remove more than 90% for NO and more than 80% for $SO_2$.

The Importance of the Aging Time to Prepare Cu/ZnO/Al2O3 Catalyst with High Surface Area in Methanol Synthesis

  • Jung, Heon;Yang, Dae-Ryook;Joo, Oh-Shim;Jung, Kwang-Deog
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1241-1246
    • /
    • 2010
  • Ternary Cu/ZnO/$Al_2O_3$ catalysts were prepared by a co-precipitation method. The precursor structures were monitored during the aging. The first precipitate structure was amorphous georgeite, which transformed into the unknown crystalline structure. The transition crystalline structure was assigned to the crystalline georgeite, which was suggested with elemental analysis, IR and XRD. The final structure of precursors was malachite. The Cu surface area of the resulting Cu/ZnO/$Al_2O_3$ was maximized to be 30.6 $m^2$/g at the aging time of 36 h. The further aging rapidly decreased Cu surface areas of Cu/ZnO/$Al_2O_3$. ZnO characteristic peaks in oxide samples almost disappeared after 24 h aging, indicating that ZnO was dispersed in around bulk CuO. TOF of the prepared catalysts of the Cu surface area ranges from 13.0 to 30.6 $m^2/g_{cat}$ was to be 2.67 ${\pm}$ 0.27 mmol/$m^2$.h in methanol synthesis at the condition of $250^{\circ}C$, 50 atm and 12,000 mL/$g_{cat}$. h irrespective of the XRD and TPR patterns of CuO and ZnO structure in CuO/ZnO/$Al_2O_3$. The pH of the precipitate solution during the aging time can be maintained at 7 by $CO_2$ bubbling into the precipitate solution. Then, the decrease of Cu surface area by a long aging time can be prevented and minimize the aging time to get the highest Cu surface area.

Activity and Characteristics of Cu-Mn Oxide Catalysts Supported on γ-Al2O3 (γ-Al2O3에 담지된 Cu-Mn 산화물 촉매의 활성 및 특성)

  • Kim, Hye-jin;Choi, Sung-Woo;Lee, Chang-Seop
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.193-199
    • /
    • 2006
  • The catalytic oxidation of toluene over $-Al_2O_3$ supported copper-manganese oxide catalysts in the temperature range of $160-280^{\circ}C$ was investigated by employing a fixed bed flow reactor. The catalysts were characterized by BET, scanning electron microscopy (SEM), temperature-programmed reduction(TPR), temperature-programmed oxidation(TPO), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction(XRD) techniques. Catalytic oxidation of toluene was achieved at the below $280^{\circ}C$, and the optimal content of copper and manganese in the catalyst was found to be 15.0 wt%Cu-10.0 wt%Mn. From the TPR/TPO and XPS results, the redox peak of 15 Cu-10 Mn catalyst shifted to the lower temperature, and the binding energy was shifted to the higher binding energy. Furthermore, It is considered that $Cu_{1.5}Mn_{1.5}O_4$ is superior to Mn oxides and CuO in the role as active factor of catalysts from the XRD results and also catalytic activities are dependent on the redox ability and high oxidation state of catalysts.

Effect of Ultrasonic Agitation on Pd Catalyst Treatment (파라듐 촉매화 처리에 미치는 초음파 교반의 영향)

  • 김동규;이홍로;추현식
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.6
    • /
    • pp.545-552
    • /
    • 2001
  • Effect of ultrasonic agitation on Pd catalyst treatment was studied in metallization of ceramic boards by Cu electroless plating method.96% $Al_{2}$$O_{3}$ ceramic boards were used as substrate. In this study, the ultrasonic frequency of 28kHz was applied. In Pd catalyst, high density Pd nuclei of small size were formed during ultrasonic agitation. Density of Pd was more improved when using of ultrasonic then no stirring. In electroless plating, plating rate was in the range of 0.6~1.8$\mu\textrm{m}$/hr, which value increased with Rochelle Salts addition. Adhesion strength between ceramic boards and Cu layer was improved of 20% when using ultrasonic agitation at $30^{\circ}C$ ,5min.

  • PDF

Microstructures and Repeated Usage-Properties of de-$NO_{x}$ Transition Metals/ZSM-5 Catalyst Made by Mechanical Alloying Method (기계적합금화법을 이용하여 제조된 $NO_{x}$ 제거용 천이금속/ZSM-5촉매의 미세구조 및 반복사용특성)

  • 조규봉;안인섭;남태현
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.273-278
    • /
    • 1998
  • $De-NO_x$ transition metals(Cu, Co)/ZSM-5 catalyst was made by mechanical alloying method, and their microstructures and repeated usage-properties were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The conversions ability of NO in the catalyst was measured. A part of ZSM-5 in CO/ZSM-5 composite powders was amorphous and the amorphous phase became less stable with increasing Co content. Conversion ability of NO in 10Cu/ZSM-5 powders decreased from 89% to 12% and that in 10Co/ZSM-5 decreased from 22% to 17% by 7 times conversion tests.

  • PDF

Catalytic Oxidation of Cyclohexene with Hydrogen Peroxide over Cu(II)-Cyclam-SBA-16 Catalyst

  • Prasetyanto, Eko Adi;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.1033-1037
    • /
    • 2008
  • A copper cyclam-type complex was successfully immobilized onto mesoporous silica SBA-16. Characterization by NIR spectroscopy and TGA analysis confirmed that copper cyclam complex is immobilized onto mesoporous SBA-16. The Cu(II)-Cyclam-SBA-16 was proven to be a good catalyst for oxidation reaction of cyclohexene with conversion up to 77.8% after 13 h reaction and providing a high selectivity to cyclohexenol and 3-hydroperoxycyclohex-1-ene. The results suggest that the copper species play a major role as catalyst via reversible redox cycles as proven by cyclic voltammetry analysis.

Electrochemical properties of porous AuCu dendrite surface for the oxygen reduction reaction in alkaline solutions (알칼리 수용액에서 산소환원반응에 대한 다공성 AuCu 덴드라이트 표면의 전기화학적 특성 평가)

  • Kim, Min-Yeong;Lee, Jong Won;Cho, Soo Yeon;Park, Da Jung;Jung, Hyun Min;Lee, Joo Yul;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Porous dendrite structure AuCu alloy was formed using a hydrogen bubble template (HBT) technique by electroplating to improve the catalytic performance of gold, known as an excellent oxygen reduction reaction (ORR) catalyst in alkaline medium. The rich Au surface was maximized by selectively electrochemical etching Cu on the AuCu dendrite surface well formed in a leaf shape. The catalytic activity is mainly due to the synergistic effect of Au and Cu existing on the surface and inside of the particle. Au helps desorption of OH- and Cu contributes to the activation of O2 molecule. Therefore, the porous AuCu dendrite alloy catalyst showed markedly improved catalytic activity compared to the monometallic system. The porous structure AuCu formed by the hydrogen bubble template was able to control the size of the pores according to the formation time and applied current. In addition, the Au-rich surface area increased by selectively removing Cu through electrochemical etching was measured using an electrochemical calculation method (ECSA). The results of this study suggest that the alloying of porous AuCu dendrites and selective Cu dissolution treatment induces an internal alloying effect and a large specific surface area to improve catalyst performance.

NOx Removal of NH3-SCR Catalysts with Operating Conditions (공정조건에 따른 NH3-SCR용 촉매의 질소산화물 제거특성)

  • Park, Kwang Hee;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5610-5614
    • /
    • 2012
  • Performance of catalyst was studied with various operating conditions for selective catalytic reduction of $NO_x$ with $NH_3$. It is confirmed that catalysts containing Mn and Cu have a good efficiency in the usage of oxygen by the $H_2$-TPR analysis. In the case of catalyst #1, $NO_x$ conversion was decrease with the increase of reaction temperature. But in the case of catalyst #2, $NO_x$ conversion was increased and then remained constant with the increase of reaction temperature. This phenomenon is due to the difference of the $NH_3$ oxidation of both catalysts.

Development of High Performance WGS Catalyst for Fuel Processor Applications (연료 개질기용 고성능 수성가스 전환반응 촉매 개발)

  • Lee, Yoon-Ju;Ryu, Jong-Woo;Kim, Dae-Hyun;Choi, Eun-Hyung;Noh, Won-Suck;Lee, Sang-Deuk;Moon, Dong-Ju
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.451-454
    • /
    • 2006
  • WGS reaction over Mo2C and ceria based catalysts was investigated to develop an alternative commercial Cu-Zn/Al2O3 catalyst for fuel processor and hydrogen station. The Mo2C catalysts were prepared by a temperature programmed method and the various metal supported cerium oxide catalysts were prepared by an Impregnation method. The catalysts were characterized by the N2 physisorption, Co chemisorption, XRD, TEM and TPR. It was found that Mo2C and 0.2wt% Pt-40wt%, Ni/CeO2 catalysts had higher activity and stability than the Cu-Zn/Al203 above $260^{\circ}C$. Moreover, CO conversion of more than 85% was observed at $280{\sim}300^{\circ}C$. But all catalysts were deactivated during the thermal cycling runs. The results suggest that these catalysts are an attractive candidate for the alternative Cu-Zn/Al2O3 catalyst for fuel processor and hydrogen station applications.

  • PDF