• Title/Summary/Keyword: Cu-Zn-Al

Search Result 615, Processing Time 0.024 seconds

Helical coil springs property in Cu-Zn-Al shape memory alloy (Cu-Zn-Al 형상기억합금의 코일스프링 특성)

  • Kwon, Hee-Kyung;Choi, Chang-Soo;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.3
    • /
    • pp.187-197
    • /
    • 1996
  • In this study, the properties of coil spring made by Cu-Zn-Al and B added shape memory alloys are investigated. The measurement of recovery displacement and energy with increasing weight, and thermocycling properties have been studied using displacement measuring device. Transformation temperature and phase change by thermocycling have been also investigated by DSC and X-ray diffractometer. Grain size of the alloy is refined from 1.2mm to $400{\mu}m$ by 0.06wt% of B addition. The maximum recovery energy of the coil spring for B added alloy is larger than that of no B added alloy, it is because of grain refinement. And shape memory ability of the coil spring by thermocycling decrease with increasing thermocycling after thermocycle under load. The degradation of shape memory properties of coil spring by thermocycling is improved by B addition.

  • PDF

Effects of DTPA on Microelements in Soybean and Bush Bean (대두 및 강낭콩내 미량원소의 농도 및 분포에 미치는 DTPA의 영향)

  • 차종환
    • Journal of Plant Biology
    • /
    • v.16 no.3_4
    • /
    • pp.40-44
    • /
    • 1973
  • Hawkeye(Fe-chlorosis resistant) and PI 54619-5-1(Fe-chlorosis sensitive) soybeans were grown with and without DPTA(diethylene triamine pentaacetic acid) in Yolo loam soil. The major purpose of the study was to compare leaf-stem distribution of microelements for different treatments which increase concentrations of microelements in plants to evaluate the role of the chelating agent in increasing translocation of the microelements. Plant responses and yields were recorded and Fe, Mn, Zn, Cu, Al, Co, N, Sn, Pb and Mo contents of leaves and stems were determined by emission spectrography. Sulfur(soil pH4) increased leaf concentrations of Mn, Zn, Cu, CO, Ni, Sn and Pb. DTPA, particularly at 50ppm in soil, increased leaf concentrations of Fe, Mn, Zn, Cu, Co, Ni and Mo. It increased Ti in leaves for the PI 54619-5-1 soybeans only. DTPA increased the ratios of the concentration in leaves to that in stems for Fe, Zn, Cu, Al, Ti, CO, Ni and Mo. Sulfur which increased the microelement concentration in both leaves and stems did not have this effect. DTPA increased the ratio at soil pH 6 and 8.5 in leaves to that in stems of the bush bean plants for Fe, Zn, Cu, Ni, but to a lesser extent in bush beans than in soybeans. PI 54619-5-1 soybeans tended to contain less of most of the metals than did Hawkeye soybeans.

  • PDF

Preparation and Reactivity of Cu-Zn-Al Based Hybrid Catalysts for Direct Synthesis of Dimethyl Ether by Physical Mixing and Precipitation Methods (물리혼합 및 침전법에 의한 DME 직접 합성용 Cu-Zn-Al계 혼성촉매의 제조 및 반응특성)

  • Bang, Byoung Man;Park, No-Kuk;Han, Gi Bo;Yoon, Suk Hoon;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.566-572
    • /
    • 2007
  • Two hybrid catalysts for the direct synthesis of DME were prepared and the catalytic activity of these catalysts were investigated. The hybrid catalyst for the direct synthesis of DME was composed as the catalytic active components of methanol synthesis and dehydration. The methanol synthesis catalyst was formed from the precursor contained Cu and Zn, the methanol dehydration catalyst was used ${\gamma}-Al_2O_3$. As PM-CZ+D and CP-CZA/D, Two hybrid catalysts were prepared by physical mixing method (PM-CZ+D) and precipitation method (CP-CZA/D), respectively. PM-CZ+D was prepared by physically mixing methanol synthesis catalyst and methanol dehydration catalyst, CP-CZA/D was prepared by depositing Cu-Zn or Cu-Zn-Al components on ${\gamma}-Al_2O_3$. The crystallinity and the surface morphology of synthesized catalyst were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) to investigate the physical property of prepared catalyst. And BET surface area by $N_2$ adsorption and the surface area of Cu by $N_2O$ chemisorption were investigated about the hybrid catalysts. In addition, catalytic activity of these hybrid catalysts was examined with varying reaction conditions. At that time, the reaction temperature of $250{\sim}290^{\circ}C$, the reaction pressure of 50~70 atm, the $[H_2]/[CO]$ mole ratio of 0.5~2.0 and the space velocity of $1,500{\sim}6,000h^{-1}$ were investigated the catalytic activity. From these results, it was confirmed that the reactivity of CP-CZA/D was higher than that of PM-CZ+D. When the conditions of reaction temperature, pressure, $[H_2]/[CO]$ ratio and space velocity were $260^{\circ}C$, 50 atm and 1.0, $3,000h^{-1}$ respectively, CO conversion using CP-CZA/D hybrid catalyst was 72% and the CO conversion of CP-CZA/D was more than 20% compared with the CO conversion of PM-CZ+D. It was known that Cu surface area of CP-CZA/D hybrid catalyst was higher than that of hybrid PM-CZ+D catalyst using $N_2O$ chemisorption. It was assumed that the catalytic activity was improved because Cu particle of hybrid catalyst prepared by precipitation method was well dispersed.

Heavy Metal Contamination in Surface Sediments from Masan and Jinhae Bay, Southeast Coast of Korea (남해 동부해역 임해공단 연안퇴적물의 중금속 오염: 마산만 및 진해만)

  • Cho, Yeong-Gil;Lee, Chang-Bok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.302-313
    • /
    • 2012
  • Concentrations of selected heavy metals (Al, Fe, Mn, Cr, Cu, Ni, Zn, Pb, As and Cd) in surface sediments from 96 sites in Masan and Jinhae Bay were studied in order to understand metal contamination. Results show that the surface sediments were mainly enriched by Cu (18-294 ppm), Zn (67-568 ppm), Pb (10-120 ppm) and Cd (0.2-3.5 ppm). The coastal zone of Masan Bay was significantly more contaminated than the non-coastal zone, and spatial distribution pattern suggested additional sources of heavy metal input in the coastal area. The enrichment ratio and geoaccumulation index ($I_{geo}$) have been calculated and the relative contamination levels assessed in the study area. The enrichment ratios of Cu, Zn, Pb and Cd in Masan Bay have been observed to be relatively high. $I_{geo}$ results reveal that the study area is not contaminated with respect to Fe, Mn, Cr and Ni; moderately to strongly contaminated with Cu, Zn and Pb; and strongly to strong contaminated with Cd. The high contents of Cu, Zn, Pb and Cd in the study area result from anthropogenic activities in the catchment area. Based on the eight different sediment quality guideline values from USA (ERL, ERM), Canada (TEL, PEL), Australia/New Zealand (ISQG-high, ISQG-low) and Hong Kong (ISQV-low, ISQV-high), sediment quality of Masan and Jinhae Bay was also assessed and characterized.

Protective Metal Oxide Coatings on Zinc-sulfide-based Phosphors and their Cathodoluminescence Properties

  • Oh, Sung-Il;Lee, Hyo-Sung;Kim, Kwang-Bok;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3723-3729
    • /
    • 2010
  • We investigated the high-excitation voltage cathodoluminescence (CL) performance of blue light-emitting (ZnS:Ag,Al,Cl) and green light-emitting (ZnS:Cu,Al) phosphors coated with metal oxides ($SiO_2$, $Al_2O_3$, and MgO). Hydrolysis of the metal oxide precursors tetraethoxysilane, aluminum isopropoxide, and magnesium nitrate, with subsequent heat annealing at $400^{\circ}C$, produced $SiO_2$ nanoparticles, an $Al_2O_3$ thin film, and MgO scale-type film, respectively, on the surface of the phosphors. Effects of the phosphor surface coatings on CL intensities and aging behavior of the phosphors were assessed using an accelerating voltage of 12 kV. The MgO thick film coverage exhibited less reduction in initial CL intensity and was most effective in improving aging degradation. Phosphors treated with a low concentration of magnesium nitrate maintained their initial CL intensities without aging degradation for 2000 s. In contrast, the $SiO_2$ and the $Al_2O_3$ coverages were ineffective in improving aging degradation.

Effect of Cu Addition on Thermal Properties of Mg-6Zn-xCu alloys (Mg-6Zn-xCu 합금의 열적 특성에 미치는 Cu 첨가의 영향)

  • Ye, Dea-Hee;Kim, Hyun-Sik;Kang, Min-Cheol;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.35 no.4
    • /
    • pp.67-74
    • /
    • 2015
  • In this study, Mg-Zn alloys are investigated in terms of their thermal properties after an addition of Cu. Al element is added to improve the mechanical properties and castability in general case. However, it was excluded here because it significantly decreases the thermal conductivity. On the other hand, Zn was added as a major element, which had less influence on reducing the conductivity and can complement the mechanical properties as well. Cu was also added, and it improved the heat transfer characteristics as the amount was increased. The composition ranges of Zn and Cu are 6 wt.% and 0~1.5 wt.%, respectively. Mg-6Zn-xCu alloy was prepared by a gravity casting method using a steel mold and then the thermal conductivity and the microstructure of the as-cast material were investigated. By measuring the density_(${\rho}$), specific heat_(Cp) and thermal diffusivity_(${\alpha}$), the thermal conductivity_(${\lambda}$) was calculated by the equation ${\lambda}={\rho}{\cdot}Cp{\cdot}{\alpha}$. As the amount of Cu increased in the Mg-6Zn-xCu alloy, the heat transfer characteristics were improved, resulting in a synergistic effect which is slow when the added Cu exceeds 1 wt.%. In order to investigate the relative thermal conductivity/emission of the Mg-6Zn-xCu alloy, AZ91 and AZ31 were experimentally evaluated and compared using a separate test equipment. As a result, the Mg-6Zn-1.5Cu alloy when compared to AZ91 showed improvements in the thermal conductivity ranging from 30 to 60% with a nearly 20% improvement in the thermal emission.

Fabrication of a Cu2ZnSn(S,Se)4 thin film solar cell with 9.24% efficiency from a sputtered metallic precursor by using S and Se pellets

  • Gang, Myeong-Gil;Hong, Chang-U;Yun, Jae-Ho;Gwak, Ji-Hye;An, Seung-Gyu;Mun, Jong-Ha;Kim, Jin-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.86.2-86.2
    • /
    • 2015
  • Cu2ZnSn(S,Se)4 thin film solar cells have been fabricated using sputtered Cu/Sn/Zn metallic precursors on Mo coated sodalime glass substrate without using a toxic H2Se and H2S atmosphere. Cu/Sn/Zn metallic precursors with various thicknesses were prepared using DC magnetron sputtering process at room temperature. As-deposited metallic precursors were sulfo-selenized inside a graphite box containing S and Se pellets using rapid thermal processing furnace at various sulfur to selenium (S/Se) compositional ratio. Thin film solar cells were fabricated after sulfo-selenization process using a 65 nm CdS buffer, a 40 nm intrinsic ZnO, a 400 nm Al doped ZnO, and Al/Ni top metal contact. Effects of sulfur to selenium (S/Se) compositional ratio on the microstructure, crystallinity, electrical properties, and cell efficiencies have been studied using X-ray diffraction, Raman spectroscopy, field emission scanning electron microscope, I-V measurement system, solar simulator, quantum efficiency measurement system, and time resolved photoluminescence spectrometer. Our fabricated Cu2ZnSn(S,Se)4 thin film solar cell shows the best conversion efficiency of 9.24 % (Voc : 454.6 mV, Jsc : 32.14 mA/cm2, FF : 63.29 %, and active area : 0.433 cm2), which is the highest efficiency among Cu2ZnSn(S,Se)4 thin film solar cells prepared using sputter deposited metallic precursors and without using a toxic H2Se gas. Details about other experimental results will be discussed during the presentation.

  • PDF

The Effects of Al-Alloying Elements on the Melt Oxidation(II, Oxide Layer Shape and Microstructure) (Al-합금의 원소가 용융산화에 미치는 영향(ll. 산화층 형상과 미세구조))

  • Jo, Chang-Hyeon;Gang, Jeong-Yun;Kim, Il-Su;Kim, Cheol-Su;Kim, Chang-Uk
    • Korean Journal of Materials Research
    • /
    • v.7 no.8
    • /
    • pp.660-667
    • /
    • 1997
  • AI-Mg-합금의 용융산화에 의해 생성되는 AlO$_{2}$O$_{3}$-복합재료의 미세구조에 미치는 합금원소의 영향을 연구하였다. AI-1Mg 합금과 AI-3Mg 합금을 기본으로하여 Si, Zn, Sn, Cu, Ni, Ca, Ce를 1, 3, 5 %를 무게비로 첨가하였다. 각 합금을 1473K에서 20시간 유지하여 산화시킨 후 산화층의 거시적 형상과 미세구조를 광학현미경으로 관찰하였다. 각 미세구조의 상분율을 상분석기로 측정하였다. 산화층의 최첨단면은 SEM과 EDX로 관찰하고 분석하였다. Cu나 Ni를 첨가한 합금으로부터 성장한 산화층의 미세구조가 가장 치밀하였다. Zn이 포함된 합금으로부터 성장한 산화층 최첨단 성장면에는 ZnO가 관찰되었다. Zn이 포함되지 않은 다른 합금의 성장 전면에는 항상 MgAi$_{2}$O$_{4}$상이 관찰되었다.

  • PDF

Fabrication and characterization of ZnO-based SAW filters using various IDT metals (다양한 IDT 금속막을 이용한 ZnO-SAW 필터의 제작 및 특성 분석)

  • Lee, Myung-Ho;Lee, Hye-Jung;Lee, Jin-Bock;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1390-1392
    • /
    • 2001
  • ZnO-based SAW(surface acoustic wave) filters are fabricated with the configuration of IDT/ZnO/$SiO_2$/Si(100) using various IDT materials such as Al, Cu/Ti, and Cu/Al. Their frequency response characteristics are measured and compared. The thickness of Al IDT is varied to examine the mass loading effect. In addition, effects of thermal treatment and electrical stress on the frequency responses of the fabricated SAW filters are investigated.

  • PDF

A Study on Cu-based Catalysts for Oxygen Removal in Nitrogen Purification System (질소 정제 시스템의 산소 제거용 구리계 촉매 연구)

  • Oh, Seung Kyo;Seong, Minjun;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • Since the active matrix organic light-emitting diode (AMOLED) encapsulation process is very vulnerable to moisture and oxygen, high-purity nitrogen with minimal moisture and oxygen must be used. In this study, a copper-based catalyst used to remove oxygen from nitrogen in the AMOLED encapsulation process was optimized. Two-component and three-component catalysts composed of CuO, Al2O3, or ZnO were prepared through a co-precipitation method. The prepared catalysts were characterized by using BET, XRD, TPR, and XRF analysis. In order to verify the oxygen removal performance of the catalyst, several catalytic reactions were conducted in a fixed bed reactor, and the corresponding oxygen contents were measured through an oxygen analyzer. In addition, reusability of the catalysts was proven through repetitive regeneration. The properties and oxygen removal capacity of the catalysts prepared with CuO and Al2O3 ratios of 6 : 4, 7 : 3, and 8 : 2 were compared. The number of active sites of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the highest among the 2-component catalysts. Moreover, the reducibility of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the best as it had the highest CuO dispersion. As a result, the oxygen removal ability of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the best among the 2-component catalysts. The best oxygen removal capacity was obtained when 2wt% of ZnO was added to the sub-optimized catalyst (i.e., CuO : Al2O3 = 8 : 2) probably due to its outstanding reducibility. Furthermore, the optimized catalyst kept its performance during a couple of regeneration tests.