DOI QR코드

DOI QR Code

A Study on Cu-based Catalysts for Oxygen Removal in Nitrogen Purification System

질소 정제 시스템의 산소 제거용 구리계 촉매 연구

  • Oh, Seung Kyo (Department of Chemical Engineering, Kongju National University) ;
  • Seong, Minjun (Department of Chemical Engineering, Kongju National University) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
  • Received : 2020.11.19
  • Accepted : 2021.01.06
  • Published : 2021.03.31

Abstract

Since the active matrix organic light-emitting diode (AMOLED) encapsulation process is very vulnerable to moisture and oxygen, high-purity nitrogen with minimal moisture and oxygen must be used. In this study, a copper-based catalyst used to remove oxygen from nitrogen in the AMOLED encapsulation process was optimized. Two-component and three-component catalysts composed of CuO, Al2O3, or ZnO were prepared through a co-precipitation method. The prepared catalysts were characterized by using BET, XRD, TPR, and XRF analysis. In order to verify the oxygen removal performance of the catalyst, several catalytic reactions were conducted in a fixed bed reactor, and the corresponding oxygen contents were measured through an oxygen analyzer. In addition, reusability of the catalysts was proven through repetitive regeneration. The properties and oxygen removal capacity of the catalysts prepared with CuO and Al2O3 ratios of 6 : 4, 7 : 3, and 8 : 2 were compared. The number of active sites of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the highest among the 2-component catalysts. Moreover, the reducibility of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the best as it had the highest CuO dispersion. As a result, the oxygen removal ability of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the best among the 2-component catalysts. The best oxygen removal capacity was obtained when 2wt% of ZnO was added to the sub-optimized catalyst (i.e., CuO : Al2O3 = 8 : 2) probably due to its outstanding reducibility. Furthermore, the optimized catalyst kept its performance during a couple of regeneration tests.

Active Matrix Organic Light-Emitting Diode (AMOLED) 봉지 공정은 수분과 산소에 매우 취약하기 때문에, 수분과 산소의 함량이 최소화된 고순도의 질소를 사용하여야 한다. 본 연구의 목적은 AMOLED 봉지 공정에 사용하는 질소에서 산소를 제거하기 위한 용도로 사용되는 구리계 촉매를 최적화하는 것이다. CuO, Al2O3, 또는 ZnO의 조성으로 이루어진 2성분계 및 3성분계 촉매를 공침법을 통해서 제조하였다. 제조된 촉매들을 BET, XRD, TPR, XRF의 분석장비를 활용하여 촉매의 특성을 분석하였다. 촉매의 산소 제거 성능을 확인하기 위해 고정층 반응기에서 촉매 산소 제거 반응 실험을 수행하고 산소 분석기를 통해 산소 함량을 측정하였다. 또한 사용된 촉매의 반복 재생을 통해 촉매의 재사용 성능을 검증하였다. CuO와 Al2O3 비율이 6 : 4, 7 : 3 및 8:2로 제조된 2 성분계 촉매의 특성과 산소 제거 능력을 비교하였다. CuO와 Al2O3의 비율이 8:2인 촉매의 환원성이 가장 높았는데, 이는 CuO의 분산도가 가장 높기 때문이다. 결과적으로, 2성분계 촉매 중에서 CuO와 Al2O3의 비율이 8 : 2 인 촉매의 산소 제거 능력이 가장 우수한 것으로 나타났다. CuO : Al2O3 의 비율이 8:2인 촉매에 ZnO를 2 wt% 넣어준 촉매가 3성분계 촉매 중에는 가장 우수한 산소제거 능력을 보였으며, 이는 뛰어난 환원성에 기인한다고 할 수 있다. 또한 이 촉매는 재생 실험을 통해서도 산소 제거능력이 유지된다는 것을 확인하였다.

Keywords

References

  1. Kruger, B. O., "Removal of oxygen from gas stream with copper catalyst," U.S. Patent No. 4,034,062 (1977).
  2. Golden, T. C., and Johnson, C. H., III., "Adsorbent for removal of trace oxygen from inert gases," U.S. Patent No. 5,536,302 (1996).
  3. Hsiung, T. H-L., Machado, J. R. S., and Schwarz, A., "Method and apparatus for removing trace quantities of impurities from liquified bulk gases," U.S. Patent No. 5,737,941 (1998).
  4. Hsiung, T. H.-L., and Wallace, J. B., Jr., "Bulk nitrogen purification process that requires no hydrogen in the regeneration," U.S. Patent No. 5,993,760 (1999).
  5. Jain, R., and Tseng, J. K., "Process for argon purification," U.S. Patent No. 6,113,869 (2000).
  6. Tom, G. M., and Brown, D. W., "Process, composition, and apparatus for purifying inert gases to remove Lewis acid and oxidant impurities therefrom," U.S. Patent No. 5,015,411 (1991).
  7. Sivaraj, C., and Kantarao, P., "Characterization of Copper/alumina Catalysts Prepared by Deposition-Precipitation Using Urea Hydrolysis : I. Nitrous Oxide Decomposition and Reaction of Ethanol," Appl. Catal., 45(1), 103-114 (1988). https://doi.org/10.1016/S0166-9834(00)82396-9
  8. Rakoczy, J., Niziol, J., Wieczorek-Ciurowa, K., and Dulian, P., "Catalytic Characteristics of a Copper-alumina Nanocomposite formed by the Mechanochemical Route," React. Kinet. Mech. Catal., 108(1), 81-89 (2013). https://doi.org/10.1007/s11144-012-0503-8
  9. Turco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., and Busca, G., "Production of Hydrogen from Oxidative Steam Reforming of Methanol I. Preparation and Characterization of Cu/ZnO/Al2O3 Catalysts from a Hydrotalcite-like LDH Precursor," J. Catal., 228(1), 43-55 (2004). https://doi.org/10.1016/S0021-9517(04)00412-9
  10. Chang, F.-W., Kuo, W.-Y., and Yang, H.-C., "Preparation of Cr2O3-promoted Copper Catalysts on Rice Husk Ash by Incipient Wetness Impregnation," Appl. Catal. A: Gen., 288, 53-61 (2005). https://doi.org/10.1016/j.apcata.2005.04.046
  11. Zhang, X. R., Shi, P., Zhao, J., Zhao, M., and Liu, C., "Production of Hydrogen for Fuel Cells by Steam Reforming of Methanol on Cu/ZrO2/Al2O3 Catalysts," Fuel Process. Technol., 83(1-3), 183-192 (2003). https://doi.org/10.1016/S0378-3820(03)00066-3
  12. Perez-Hernandez, R., Mondragon Galicia, G., Mendoza Anaya, D., Palacios, J., Angeles-Chavez, C., and Arenas-Alatorre, J., "Synthesis and Characterization of Bimetallic Cu-Ni/ZrO2 Nanocatalysts: H2 Production by Oxidative Steam Reforming of Methanol," Int. J. Hydrog. Energy, 33(17), 4569-4576 (2008). https://doi.org/10.1016/j.ijhydene.2008.06.019
  13. Kurr, P., Kasatkin, I., Girgsdies, F., Trunschke, A., Schlogl, R., and Ressler, T., "Microstructural Characterization of Cu/ZnO/Al2O3 Catalysts for Methanol Steam Reforming-A Comparative Study," Appl. Catal. A: Gen., 348(2), 153-164 (2008). https://doi.org/10.1016/j.apcata.2008.06.020
  14. Lin, K.-S., Pan, C.-Y., Chowdhury, S., Lu, W., and Yeh, C.-T., "Synthesis and Characterization of CuO/ZnO-Al2O3 Catalyst Washcoat Thin Films with ZrO2 Sols for Steam Reforming of Methanol in a Microreactor," Thin Solid Films, 519(15), 4681-4686 (2011). https://doi.org/10.1016/j.tsf.2011.01.019
  15. Yang, H.-M., and Chan, M.-K., "Steam Reforming of Methanol over Copper-Yttria Catalyst Supported on Praseodymium-Aluminum Mixed Oxides," Catal. Commun., 12(15), 1389-1395 (2011). https://doi.org/10.1016/j.catcom.2011.05.022
  16. Avgouropoulos, G., Ioannides, T., Papadopoulou, C., Batista, J., Hocevar, S., and Matralis, H. K, "A Comparative Study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO-CeO2 Catalysts for the Selective Oxidation of Carbon Monoxide in Excess Hydrogen," Catal. Today, 75(1), 157-167 (2002). https://doi.org/10.1016/S0920-5861(02)00058-5
  17. Sa, S., Silva, H., Brandao, L., Sousa, J. M., and Mendes, A., "Catalysts for Methanol Steam Reforming-A Review," Appl. Catal. B: Eviron., 99(1), 43-57 (2010). https://doi.org/10.1016/j.apcatb.2010.06.015
  18. Patel, S., and Pant, K. K., "Influence of Preparation Method on Performance of Cu(Zn)(Zr)-alumina Catalysts for the Hydrogen Production Via Steam Reforming of Methanol," J. Porous Mat., 13(3), 373-378 (2006). https://doi.org/10.1007/s10934-006-8033-2
  19. Wang, L., Ding, W., Liu, Y., Fang, W., and Yang, Y., "Effect of Preparation Methods of Aluminum Emulsions on Catalytic Performance of Copper-Based Catalysts for Methanol Synthesis from Syngas," J. Nat. Gas Chem., 19(5), 487-492 (2010). https://doi.org/10.1016/S1003-9953(09)60105-5
  20. Meille, V., "Review on Methods to Deposit Catalysts on Structured Surfaces," Appl. Catal. A: Gen., 315(23), 1-17 (2006). https://doi.org/10.1016/j.apcata.2006.08.031
  21. Lin, K.-S., Chowdhury, S., Yeh, H.-P., Hong, W.-T., and Yeh, C.-T., "Preparation and Characterization of CuO/ZnO-Al2O3 Catalyst Washcoats with CeO2 Sols for Autothermal Reforming of Methanol in a Microreactor," Catal. Today, 164(1), 251-256 (2011). https://doi.org/10.1016/j.cattod.2010.11.038
  22. Mrad, M., Gennequin, C., Aboukais, A., and Abi-Aad, E., "Cu/Zn-based Catalysts for H2 Production Via Steam Reforming of Methanol," Catal. Today, 176(1), 88-92 (2011). https://doi.org/10.1016/j.cattod.2011.02.008
  23. Dow, W.-P., Wang, Y.-P., and Huang, T.-J., "Yttria-Stabilized Zirconia Supported Copper Oxide Catalyst," J. Catal., 160(2), 155-170 (1996). https://doi.org/10.1006/jcat.1996.0135
  24. Hayakawa, T., Harihara, H., Andersen, A. G., York, A. P. E., Suzuki, K., Yasuda, H., and Takehira, K., "A Sustainable Catalyst for the Partial Oxidation of Methane to Syngas: Ni/Ca1-xSrxTiO3, Prepared In Situ from Perovskite Precursors," Angew. Chem.-Int. Edit., 35(2), 192-195 (1996).
  25. Wu, G.-S., Wang, L.-C., Liu, Y.-M., Cao, Y., Dai, W.-L., He, H.-Y., and Fan, K.-N., "Implication of the Role of Oxygen Anions and Oxygen Vacancies for Methanol Decomposition Over Zirconia Supported Copper Catalysts," Appl. Surf. Sci., 253(2), 974-982 (2006). https://doi.org/10.1016/j.apsusc.2006.01.056
  26. Castricum, H. L., Bakker, H., van der Linden, B., and Poels, E. K., "Mechanochemical Reactions in Cu/ZnO Catalysts Induced by Mechanical Milling," J. Phys. Chem. B, 105(33), 7928-7937 (2001). https://doi.org/10.1021/jp004394s
  27. Fisher, I. A., and Bell, A. T., "A Mechanistic Study of Methanol Decomposition over Cu/SiO2, ZrO2/SiO2, and Cu/ZrO2/SiO2," J. Catal., 184(2), 357-376 (1999). https://doi.org/10.1006/jcat.1999.2420