• Title/Summary/Keyword: Cu-S

Search Result 3,569, Processing Time 0.032 seconds

Quantitative Surface Analysis of Co-Ni and Au-Cu alloys by XPS and SIMS (XPS와 SIMS에 의한 Co-Ni과 Au-Cu 합금표면 정량분석 연구)

  • 김경중;문대원;이광우
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.106-114
    • /
    • 1992
  • Abstract-Quantitative surface analysis of Co-Ni and Au-Cu alloys by XPS and SIMS was studied. For Co-Ni alloy, quantitative XPS analysis could be done within 1-2% relative error with pure element standards without any correction. For Au-Cu, quantitative XPS analysis was not possible without any correction. But it could be done with standard alloys of various composition within 1-2% relative error. Without standard alloys, Au-Cu alloys could be analyzed by XPS within 10% relative error with pure element standards. For SIMS analysis of Co-Ni alloys, the relative secondary ion yields of Co+/Nit has linear relation with ratio of each composition so that quantitative SIMS analysis was possible for Co-Ni alloys. Preliminary results of XPS round robin test of VAMAS-SCA Japan Project are given.

  • PDF

Effect of Deposition Rate and Annealing Temperature on Magnetoresistance in Fe$Fe(50{\AA}/[Co(17{\AA})/Cu(24{\AA})]_20$Multilayers (다층박막 $Fe(50{\AA}/[Co(17{\AA})/Cu(24{\AA})]_20$의 증착률 및 열처리가 자기저항에 미치는 효과)

  • 김미양;최수정;최규리;송은영;오미영;이장로;이상석;황도근;박창만
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.5
    • /
    • pp.282-287
    • /
    • 1998
  • Dependence of magnetoresistance on base pressure and deposition rates of each Fe, Co, Cu layers in the $Fe(50{\AA}/[Co(17{\AA})/Cu(24{\AA})]_20$ multilayer thin films, prepared by dc magnetron sputtering on Corning glass, were investigated. AFM analysis, X-ray diffraction analysis, vibrating sample magnetometer analysis, and magnetoresustance measurement (4-probe method) were performed. The multilayer films deposited under low base pressure increases magnetoresistance ratio by preventing oxidation. Annealing for the samples at a moderate temperature allowed larger textured grain with no loss in the periodicity. Magnetoresistance ratio of the annealed multilayers was increased due to the increase antiferromagnetically coupled fraction of the film after annealing. Optimization of deposition rate was greater than 1 $\AA$/s for Fe, and 2.8 $\AA$/s for Cu. Deposition rate of Co showed a tendency of increasing of magnetoresistance ratio due to the formation of flat magnetic layer in case of high deposition rate of Co.

  • PDF

Glutathione Sulphydryl Contents and Antioxidant Activities of Lactobacillus spp. and Bacillus coagulans (Lactobacillus spp.와 Bacillus coagulans의 Glutathione Sulphydryl 함유율과 황산화 활성)

  • Byun, Jeong-Yeol;Yoon, Yeong-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.91-97
    • /
    • 2004
  • The antioxidative ability on the basis of reduced glutathione sulphydryl(GSH) level, the inhibition activities of linoleic acid peroxidation of cell free extract of Lactobacillus spp. and Bacillus spp. have been determined; Lactobacillus casei CU4114 contained the highest level of GSH among the probiotic strains with 25.15 ${\mu}$mole/g. Significantly high level of GSH occured in the intracellular cell free extract of Lactobacillus rhamnosus CU4201, Lactobacillus plantarum CU4203. The antioxidant activity and inhibition of linoleic acid peroxidation of cell free extract of Lactobacillus spp. and Bacillus spp. by thiobarbituric acid(TBA) assay have been shown to be significantly differed depending on the strains(P>0.01). Intracellular cell free extracts of L. acidophilus CU4111, L. casei CU4114, and strains of Bacillus coacillus revealed a significantly intensive inhibitory activity in the linoleic acid peroxidation reactions. Spearmans' rank correlation between inhibitory activity on linoleic acid peroxidation and cellular GSH levels of Lactobacillus spp. was analysed and the correlation quotient was 0.65 which means a significant positive correlation.

  • PDF

Ion-Imprinted Polymers Modified Sensor for Electrochemical Detection of Cu2+

  • An, Zhuolin;Liu, Weifeng;Liang, Qi;Yan, Guang;Qin, Lei;Chen, Lin;Wang, Meiling;Yang, Yongzhen;Liu, Xuguang
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850140.1-1850140.9
    • /
    • 2018
  • An electrochemical sensor ($Cu^{2+}$-IIPs/GCE) was developed for detection of $Cu^{2+}$ in water. $Cu^{2+}$-IIPs/GCE was prepared by dispersing $Cu^{2+}$ imprinted polymers ($Cu^{2+}$-IIPs) on a preprocessed glassy carbon electrode. $Cu^{2+}$-IIPs were synthesized on the surface of modified carbon spheres by ion imprinting technology. The electrochemical performance of $Cu^{2+}$-IIPs/GCE was evaluated by differential pulse voltammetry method. The response of $Cu^{2+}$-IIPs/GCE to $Cu^{2+}$ was linear in $1.0{\times}10^{-5}mol/L$ to $1.0{\times}10^{-3}mol/L$. The detection limit was $5.99{\times}10^{-6}mol/L$ (S=N = 3). The current response value of $Cu^{2+}$-IIPs/GCE was 2.14 times that of the nonimprinted electrode. These results suggest that $Cu^{2+}$-IIPs/GCE can detect the concentration of $Cu^{2+}$ in water, providing a new way for heavy metal ions adsorption and testing.

Effects of Pretreatment and Ag Coating Processes Conditions on the Properties of Ag-Coated Cu Flakes (Ag 코팅 Cu 플레이크의 제조에서 전처리 및 Ag 코팅 공정 변화의 효과)

  • Kim, Ji Hwan;Lee, Jong-Hyun
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.617-624
    • /
    • 2014
  • To elucidate the effects of a pretreatment process on the uniformity of Ag electroless plating on Cu flakes, pretreatment time was mainly considered with a mixed solution of 0.15 M ammonium hydroxide and 0.0375 M ammonium sulphate. Optical inspection of Ag-coated Cu flakes determined that the optimal pretreatment time is 120 s. Repetition of the sequence in which Ag plating was done immediately after the pretreatment of 120 s clearly enhanced the plating uniformity. Scanning electron microscopy revealed that holes were formed irregularly on some Cu flakes during the period from the asdropping of an Ag precursor solution to 5 min. The hole formation was judged to be due to continuous removal of Cu on the local surfaces by the repetitive formation and elimination of $Cu_2O$ or $Cu(OH)_2$ layers. However, the increase of the amount of Ag coating suppressed the hole creation and increasingly enhanced the antioxidant property.

The Effect of Cold Working and Heat Treatment on the Magnetic Properties of in-situ Formed Cu-Fe Composites (In-situ 법(法)에 의한 Cu-Fe 복합조직(複合組織)의 자기적(磁氣的) 특성(特性)에 미치는 가공(加工) 및 열처리(熱處理)의 영향(影響))

  • Shur, S.J.;Park, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.2 no.2
    • /
    • pp.38-45
    • /
    • 1989
  • The Cu-Fe permanent magnet were prepared in situ process, which has economic and mass productive merits in producing multi filamentary composites. The purpose of this research was to study the effect of reduction ratio and heat treatment on magnetic property. As the reduction ratio of Cu-Fe wire increased, the filament structure became finer and interfilament distances decreased and the morphology of filament cross section became ribbon shape. As Fe content increased significantly. The coercivity and squareness of Cu-55 wt%Fe composite increased as a reduction ratio became higher, whereas they increased to maximum values at 0.09 mm ${\phi}$ for Cu-30 wt%Fe, and 0.066 mm ${\phi}$ for CU-45 wt%Fe respectively, and decreased for further reduction. The magnetic properties of Cu-Fe composites can be more enhanced by intermediate heat treatment. The best magnetic properties were obtained from Cu-55 wt%Fe composite deformed to 0.054 mm ${\phi}$ and annealed.

  • PDF

Synthesis and Crystal Structures of Copper(II) Complexes with Schiff Base Ligands: [Cu2(acpy-mdtc)2(HBA)(ClO4)]·H2O and [Cu2(acpy-phtsc)2(HBA)]·ClO4

  • Koo, Bon Kweon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3233-3238
    • /
    • 2013
  • Two new Cu(II) complexes, $[Cu_2(acpy-mdtc)_2(HBA)(ClO_4)]{\cdot}H_2O$ (1) (acpy-mdtc- = 2-acetylpyridine S-methyldithiocarbamate and $HBA^-$ = benzilic acid anion) and $[Cu_2(acpy-phtsc)_2(HBA)]{\cdot}ClO_4$ (2) (acpy-$phtsc^-$ = 2-acetylpyridine 4-phenyl-3-thiosemicarbazate) have been synthesized and characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, and single crystal X-ray diffraction. The X-ray analysis reveals that the structures of 1 and 2 are dinuclear copper(II) complexes bridged by two thiolate sulfur atoms of Schiff base ligand and bidentate bridging $HBA^-$ anion. For 1, each of the two copper atoms has different coordination environments. Cu1 adopts a five-coordinate square-pyramidal with a $N_2OS_2$ donor, while Cu2 exhibits a distorted octahedral geometry in a $N_2O_2S_2$ manner. For 2, two Cu(II) ions all have a five-coordinate square-pyramidal with a $N_2OS_2$ donor. In each complex, the Schiff base ligand is coordinated to copper ions as a tridentate thiol mode.

MAGNETORESISTANCE OF NiFeCo/Cu/NiFeCo/FeMn MULTILAYERED THIN FILMS WITH LOW SATURATION FIELD

  • Bae, S.T.;Min, K.I.;Shin, K.H.;Kim, J.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.570-574
    • /
    • 1995
  • Magnetoresistance of NiFeCo/Cu/NiFeCo/FeMn uncoupled exchange biased sandwiches has been studied. The magnetoresistance change ratio, ${\Delta}R/R_{s}$ showed 4.1 % at a saturation field as low as 11 Oe in $Si/Ti(50\;{\AA})/NiFeCo(70\;{\AA})/Cu(23\;{\AA})/NiFeCo(70\;{\AA})/FeMn(150\;{\AA})/Cu(50\;{\AA})$ spin valve structure. In this system, the magnetoresistance was affected by interlayer material and thickness. When Ti and Cu were used as the interlayer material in this structure, maximum magnetoresistance change ratio were 0.32 % and 4.1 %, respectively. 6.1 % MR ratio was obtained in $Si/Ti(50\;{\AA})/NiFeCo(70\;{\AA})/Cu(15\;{\AA})/NiFeCo(70\;{\AA})/FeMn(150\;{\AA})/Cu(50\;{\AA})$ spin valve structure. The magnetoresistance change ratio decreased monotonically as the interlayer thickness increased. It was found that the exchange bias field exerted by FeMn layer to the adjacent NiFeCo layer was ~25 Oe, far smaller than that reported in NiFe/Cu/NiFe/FeMn spin valve structure(Dieny et. al., ~400 Oe). The relationship between the film texture and exchange anisotropy ha been examined for spin valve structures with Ti, Cu, or non-buffer layer.

  • PDF

Fabrication and Characteristics of C(IG)(SeS)2 Absorbers by Selenization and Sulfurization

  • Son, Young-Ho;Jung, Myoung-Hyo;Choi, Seung-Hoon;Choi, Jung-Kyu;Kim, Jin-Ha;Lee, Dong-Min;Park, Joong-Jin;Lee, Jang-Hee;Jung, Eui-Chun;Kim, Jung-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.361-361
    • /
    • 2011
  • Cu(InGa)(SeS2) (CIGS) thin film solar cells have recently reached an efficiency of 20%. Recent studies suggest a double graded band gap structure of the CIGS absorber layer to be a key issue in the production of high efficiency thin film solar cell using by sputtering process method. In this study, Cu(InGa)(SeS2) absorbers were manufactured by selenization and surfulization, we have deposited CIG precusor by sputtering and Se layer by evaporation before selenization. The objective of this study is to find out surfulization effects to improve Voc and to compare with non-surfulization Cu(InGa)Se2 absorbers. Even if we didn't analysis Ga depth profile of Cu(InGa)(SeS2) absorbers, we confirmed increasing of Eg and Voc through surlization process. In non-surfulization Cu(InGa)Se2 absorbers, Eg and Voc are 0.96eV and 0.48V. Whereas Eg and Voc of Cu(InGa)(SeS2) absorbers are 1.16eV and 0.57V. And the efficiency of 9.58% was achieved on 0.57cm2 sized SLG substrate. In this study, we will be discussed to improve Eg and Voc through surfulization and the other method without H2S. gas.

  • PDF

Efficiency Analysis with Deposition Time of OVC layer in Cu(InGa)$Se_2$ Films (Cu(InGa)$Se_2$ 박막 제조시 OVC층의 증발시간에 따른 광변환효율 분석)

  • Kim, S.K.;Lee, J.L.;Kang, K.H.;Yoon, K.H.;Park, I.J.;Song, S.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1587-1589
    • /
    • 2002
  • Photovoltaics is considered as one of the most promising new energy technology, because its energy source is omni present, pollution-free and inexhaustive. It is agreed that these solar cells must be thin film type because thin film process is cost-efficive in the fact that it uses much less raw materials and can be continuous. The defect chalcopyrite material $CuIn_3Se_5$ has been identified as playing an essential role in efficient photovoltaic action in $CuInSe_2$-based devicesm It has been reported to be of n-type conductivity, forming a p-n junction with its p-type counterpart CuInSe2. Because the most efficient cells consist of the $Cu(In,Ga)Se_2$ quarternary, knowledge of some physical properties of the Ga-containing defect chalcopyrite $Cu(In,Ga)_3Se_5$ may help us better understand the junction phenomena in such devices.

  • PDF