DOI QR코드

DOI QR Code

Ion-Imprinted Polymers Modified Sensor for Electrochemical Detection of Cu2+

  • An, Zhuolin (Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education) ;
  • Liu, Weifeng (Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education) ;
  • Liang, Qi (Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education) ;
  • Yan, Guang (Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education) ;
  • Qin, Lei (Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education) ;
  • Chen, Lin (Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education) ;
  • Wang, Meiling (Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education) ;
  • Yang, Yongzhen (Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education) ;
  • Liu, Xuguang (Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education)
  • Received : 2018.07.11
  • Accepted : 2018.10.30
  • Published : 2018.12.31

Abstract

An electrochemical sensor ($Cu^{2+}$-IIPs/GCE) was developed for detection of $Cu^{2+}$ in water. $Cu^{2+}$-IIPs/GCE was prepared by dispersing $Cu^{2+}$ imprinted polymers ($Cu^{2+}$-IIPs) on a preprocessed glassy carbon electrode. $Cu^{2+}$-IIPs were synthesized on the surface of modified carbon spheres by ion imprinting technology. The electrochemical performance of $Cu^{2+}$-IIPs/GCE was evaluated by differential pulse voltammetry method. The response of $Cu^{2+}$-IIPs/GCE to $Cu^{2+}$ was linear in $1.0{\times}10^{-5}mol/L$ to $1.0{\times}10^{-3}mol/L$. The detection limit was $5.99{\times}10^{-6}mol/L$ (S=N = 3). The current response value of $Cu^{2+}$-IIPs/GCE was 2.14 times that of the nonimprinted electrode. These results suggest that $Cu^{2+}$-IIPs/GCE can detect the concentration of $Cu^{2+}$ in water, providing a new way for heavy metal ions adsorption and testing.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Natural Science Foundation of Shanxi Province, Taiyuan University of Technology

References

  1. D. L. Kong, N. Wang, N. Qiao, Q. Wang, Z. Wang, Z. Y. Zhou and Z. Q. Ren, ACS Sustain. Chem. Eng. 5, 7401 (2017). https://doi.org/10.1021/acssuschemeng.7b01761
  2. Z. Q. Ren, X. Y. Zhu, J. Du, D. L. Kong, N. Wang, Z. Wang, Q. Wang, W. Liu, Q. S. Li and Z. Y. Zhou, Appl. Surf. Sci. 435, 574 (2018). https://doi.org/10.1016/j.apsusc.2017.11.059
  3. R. Rong, H. M. Zhao, X. R. Gan, S. Chen and X. Quan, Nano 12, 1750008 (2017). https://doi.org/10.1142/S1793292017500084
  4. M. Ghanei-Motlagh, M. Fayazi and M. A. Taher, Sensor. Actuat. B-Chem. 199, 133 (2014). https://doi.org/10.1016/j.snb.2014.03.086
  5. H. H. Lou, C. Shen, Q. Xiang, J. Q. Xu and T. J. Lou, Nano 11, 1650094 (2016). https://doi.org/10.1142/S1793292016500946
  6. J. N. Wang, B. B. Jia and C. J. Li, Nano 10, 1550029 (2015). https://doi.org/10.1142/S1793292015500290
  7. J. X. Duan, X. Li and C. C. Zhang, Polym. Bull. 74, 1 (2017). https://doi.org/10.1007/s00289-016-1693-4
  8. D. L. Kong, N. Qiao, H. Liu, J. Du, N. Wang, Z. Y. Zhou and Z. Q. Ren, Chem. Eng. J. 326, 141 (2017). https://doi.org/10.1016/j.cej.2017.05.140
  9. L. X. Chen, X. Y. Wang, W. H. Lu, X. Q. Wu and J. H. Li, Chem. Soc. Rev. 45, 2137 (2016). https://doi.org/10.1039/C6CS00061D
  10. J. J. Wang and Z. K. Li, J. Hazard. Mater. 300, 18 (2015). https://doi.org/10.1016/j.jhazmat.2015.06.043
  11. J. S. He and J. P. Chen, Bioresour. Technol. 160, 67 (2014). https://doi.org/10.1016/j.biortech.2014.01.068
  12. A. P. Lim and A. Z. Aris, Rev. Environ. Sci. Biol. 13, 163 (2013).
  13. S. M. Choi, D. M. Kim, O. S. Jung and Y. B. Shim, Anal. Chim. Acta 892, 77 (2015). https://doi.org/10.1016/j.aca.2015.08.037
  14. X. L. Chai, X. G. Zhou, A. W. Zhu, L. M. Zhang, Y. Qin, G. Y. Shi and Y. Tian, Angew. Chem. Int. Ed. 52, 8129 (2013). https://doi.org/10.1002/anie.201302958
  15. X. Du, H. Zhang, X. G. Hao, G. Q. Guan and A. Abudula, ACS Appl. Mater. Inter. 6, 9543 (2014). https://doi.org/10.1021/am501926u
  16. M. Lin, M. Cho, W. S. Choe, Y. Son and Y. Lee, Electrochim. Acta 54, 7012 (2009). https://doi.org/10.1016/j.electacta.2009.07.025
  17. Y. Zhou, S. X. Wang, K. Zhang and X. Y. Jiang, Angew. Chem. Int. Ed. 47, 7454 (2008). https://doi.org/10.1002/anie.200802317
  18. H. Zhao, Y. Jiang, Y. R. Ma, Z. J. Wu, Q. Cao, Y. J. He, X. J. Li and Z. B. Yuan, Electrochim. Acta 55, 2518 (2010). https://doi.org/10.1016/j.electacta.2009.12.008
  19. G. Aragay and A. Merkoçi, Electrochim. Acta 84, 49 (2012). https://doi.org/10.1016/j.electacta.2012.04.044
  20. P. R. Dalmasso, M. L. Pedano and G. A. Rivas, J. Electroanal. 27, 2164 (2015). https://doi.org/10.1002/elan.201500116
  21. M. Fayazi, M. A. Taher, D. Afzali, A. Mostafavi and M. Ghanei-Motlagh, Mat. Sci. Eng. C 60, 365 (2016). https://doi.org/10.1016/j.msec.2015.11.060
  22. Z. H. Wang, X. L. Liu, J. M. Yang, Y. X. Qing and X. Q. Lu, Electrochim. Acta 58, 750 (2011). https://doi.org/10.1016/j.electacta.2011.10.034
  23. B. B. Prasad, D. Jauhari and A. Verma, Talanta 120, 398 (2014). https://doi.org/10.1016/j.talanta.2013.12.036
  24. E. Roy, S. Patra, R. Madhuri and P. K. Sharma, RSC Adv. 4, 56690 (2014). https://doi.org/10.1039/C4RA08875A
  25. H. Ashkenani and M. A. Taher, J. Electroanal. Chem. 683, 80 (2012). https://doi.org/10.1016/j.jelechem.2012.08.010
  26. M. A. Abu-Dalo, A. A. Salam and N. S. Nassory, Int. J. Electrochem. Sci. 10, 6780 (2015).
  27. W. F. Liu, L. Qin, Z. L. An, L. Chen, X. G. Liu, Y. Z. Yang and B. S. Xu, Environ. Chem. 15, 306 (2018). https://doi.org/10.1071/EN18046
  28. M. Ghanei-Motlagh and M. A. Taher, Chem. Eng. J. 327, 135 (2017). https://doi.org/10.1016/j.cej.2017.06.091
  29. M. Ghanei-Motlagh, Ch. Karmi, M. A. Taher and S. J. Hosseini-Nasab, RSC Adv. 6, 89167 (2016). https://doi.org/10.1039/C6RA10267K
  30. M. Ghanei-Motlagh, M. A. Taher, V. Saheb, M. Fayazi and I. Sheikhshoaie, Electrochim. Acta 56, 5376 (2011). https://doi.org/10.1016/j.electacta.2011.03.098