• Title/Summary/Keyword: Cu-Ni-P

Search Result 577, Processing Time 0.025 seconds

Studies on Antimutagenic Effects and Gene Repair of Enzymatic Browning Reaction Products (효소적 갈변반응 생성물의 돌연변이 억제효과 및 유전자 수복에 관한 연구)

  • Ham, Seung-Shi;Kim, Sung-Wan;Kim, Young-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.632-639
    • /
    • 1990
  • The biological activities of twelve different kinds of enzymatic browning reaction products(EBRP), which resulted from the reactants four kinds of polyphenols with polyphenol oxidase extracted from Ligularia fischeri, pimpinella brachycarpa and Aster scaber of edible mountain herbs. All of twelve samples did not show any mutagenic effect in the spore rec-assay, Ames mutagenicity test and DNA breaking test. However metal ions such as $Cu^{2+},\;Fe^{2+}$, and $Ni^{2+}$ were increased the DNA breakage in rec-assay. The EBRPs inhibited the mutagenicities induced by $benzo({\alpha})pyrene (B({\alpha})P)$, 3-amino-1,4-dimethyl-5H-pyrido-[4,3-b]indole(Trp-P-1) and 2-aminofluorene(2-AF) in Salmonella/microsome assay system with S-9 mix. In effects of EBRPs on the DNA repair system, the activity of EcoRI was highly inhibited and that of $T_{4}$ DNA ligase was inactivated by addition of EBRPs. The results of transformation ratio of plasmid pGA658 into E. coli HB 101 was significantly decreased by the reaction products of S. brachycarpa polyphenoloxidase (PPO). When UV light was exposed to the mixture of DNA and EBRP before the thanformation, the reaction products from L. fischeri PPO with pyrogallol, catechol and hydroxyhydroquinone stimulated transformation ratio.

  • PDF

Thermal Stability of $\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) Amorphous Alloys ($\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) 비정질합금의 열적안정성)

  • Guk, Jin-Seon;Jeon, U-Yong;Jin, Yeong-Cheol;Kim, Sang-Hyeop
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.218-223
    • /
    • 1997
  • At the aim of finding a Fehased amorphous alloy with a wide supercooled liquid region (${\Delta}T_{x}=T_{x}-T_{g}$) before crystallization, the changes in glass transition temperatudfI$T_{g}$ and crystallization temperature ($T_{x}$) by the dissolution of additional M elements were examined for the $Fe_{80}P_{10}C_{6}B_{4}$(x~6at%. M= transition metals) amorphous alloys. The ${\Delta}T_{x}$ value is 27K for the Fe,,,P,,,C,,R, alloy and increases to 40K for the addition of M=4at%Hf, 4at%Ta or 4at%Mo. The increase in ${\Delta}T_{x}$ is due to the increase of $T_{x}$ exceeding the degree in the increase in $T_{g}$. The $T_{g}$ and $T_{x}$ increase with decreasing electron concentration (e/a) from about 7 38 to 7.05. The decrease of e/a also implies the increase in the attractive bonding state between the M elements and other constitutent elements. It is therefore said that $T_{g}$ and $T_{x}$ increase kith increasing attractive bonding force.

  • PDF

Evaluation of Biogas Production Rate by using Various Electrodes Materials in a Combined Anaerobic Digester and Microbial Electrochemical Technology (MET) (미생물 전기화학 기술이 적용된 단일 혐기성소화조에서 전극재질에 따른 바이오가스 생성 효율 평가)

  • Shin, Wonbeom;Park, Jungyu;Lee, Beom;Kim, Yonggeun;Jun, Hangbae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.2
    • /
    • pp.82-88
    • /
    • 2017
  • MET (Microbial Electrochemical Technology), such as MFC (Microbial Fuel Cell) and MEC (Microbial Electrolysis Cell), is a promising technology for producing sustainable biogas from an anaerobic digester (AD). At current stage, however, the most likely limiting factors, large internal resistances, should be overcome for successful scale up of this technology. Various researchers reported that application of electrode materials containing high current density, increase of ion strength and conductivity, configuration of electrode are good methods for minimizing internal resistances. Recently, stainless steel is receiving great attention because of not only high performance and durability but also low cost. Therefore, in this study, we evaluate electrochemical characteristics and biogas production rate using various electrode materials and configuration (graphite carbon coated with catalysts ($GC-C_M$) or not (GC), stainless steel mesh (SUS-M) and plate (SUS-P)). As the results, current densities of $GC-C_M$, GC, SUS-P, SUS-M were 2.03, 1.36, 1.04, $1.13A/m^2$, respectively. Methane yields of $GC-C_M$, GC, SUS-P, SUS-M were 0.27, 0.14, 0.19, 0.21 $L-CH_4/g-COD_{rem}$., respectively. Stainless steel shows high current density and methane yield, which are similar as graphite carbon coated with catalysts.

Synthesis, Characterization, and Thermal Degradation of Oligo-2-[(pyridin-4-yl-)methyleneamino]pyridine-3-ol and Oligomer-Metal Complexes (올리고피리디닐메틸렌아미노피리딘올과 금속 착화물의 합성, 분석 및 열분해 특성 연구)

  • Kaya, Ismet;Gul, Murat
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.295-304
    • /
    • 2008
  • This study examined the oxidative polycondensation reaction of 2-[(pyridin-4-yl-) methyleneamino] pyridine-3-ol (2-PMAP) using air $O_2$ and NaOCl oxidants at various temperatures and times in aqueous alkaline and acidic media. Under these reactions, the optimum reaction conditions using air $O_2$ and NaOCl oxidants were determined for 2-PMAP. The number-average molecular weight ($M_n$), weight average molecular weight ($M_w$), and polydispersity index (PDI) values of O-2-PMAP synthesized in aqueous alkaline media were found to be 960, 1230, and $1.281\;g\;mol^{-1}$ using NaOCl, and 1030, 1520, and $1.476\;g\;mol^{-1}$ using air $O_2$, respectively. At the optimum reaction conditions, the yield of O-2-PMAP in aqueous alkaline media was 92.50% and 85.70% for air $O_2$ and NaOCl oxidants, respectively. The yield of O-2-PMAP in aqueous acidic media was 88.5% and 88.0% for NaOCl and air $O_2$ oxidants, respectively. O-2-PMAP was characterized by $^1H-$, $^{13}C$-NMR, FT-IR, UV-vis, SEC, and elemental analysis. TGA-DTA analysis revealed O-2-PMAP and its oligomer metal complex compounds, such as $Co^{+2}$, $Ni^{+2}$, and $Cu^{+2}$, to be stable against thermal decomposition and their weight losses at $1000^{\circ}C$ were found to be 73.0, 58.0, 53.5%, and 50.0%, respectively. In addition, the antimicrobial activities of the monomer and oligomer were tested against E. Coli (ATCC 25922), E. Faecelis (ATCC 29212), P. Auroginasa (ATCC 27853), and S. Aureus (ATCC 25923).

The Effect of Aircraft Traffic Emissions on the Soil Surface Contamination Analysis around the International Airport in Delhi, India

  • Ray, Sharmila;Khillare, P.S.;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.118-126
    • /
    • 2012
  • To investigate the effect of aircraft traffic emissions on soil pollution, metal levels were analyzed for 8 metals (Fe, Cr, Pb, Zn, Cu, Ni, Mn and Cd) from the vicinity of the Indira Gandhi International (IGI) airport in Delhi, India. The texture of the airport soil was observed to be sandy. Among the metals, Cd showed minimum concentration ($2.07{\mu}g\;g^{-1}$), while Fe showed maximum concentration ($4379{\mu}g\;g^{-1}$). The highest metal accumulation was observed at the landing site. Significant correlations were observed between metals and different textures (sand, silt, and clay) as well as with organic carbon (OC). The results indicate that grain size play a major role in OC retention in soil and subsequently helps in adsorption of metals in soil. M$\ddot{u}$ller's geoaccumulation index (I-geo) showed that airport soil was contaminated due to Cd and Pb with the pollution class 2 and 1, respectively. Pollution load index of the airport site was 1.34-3 times higher than the background site. The results of factor analysis suggested that source of the soil metal is mainly from natural weathering of soil, aircraft exhaust, and automobile exhaust from near by area. With respect to Dutch target values, the airport soils showed ~3 times higher Cd concentration. The study highlighted the future risk of enhanced metal pollution with respect to Cd and Pb due to aircraft trafficking.

Silicon wire array fabrication for energy device (실리콘 와이어 어레이 및 에너지 소자 응용)

  • Kim, Jae-Hyun;Baek, Seung-Ho;Kim, Kang-Pil;Woo, Sung-Ho;Lyu, Hong-Kun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.440-440
    • /
    • 2009
  • Semiconductor nanowires offer exciting possibilities as components of solar cells and have already found applications as active elements in organic, dye-sensitized, quantum-dot sensitized, liquid-junction, and inorganic solid-state devices. Among many semiconductors, silicon is by far the dominant material used for worldwide photovoltaic energy conversion and solar cell manufacture. For silicon wire to be used for solar device, well aligned wire arrays need to be fabricated vertically or horizontally. Macroscopic silicon wire arrays suitable for photovoltaic applications have been commonly grown by the vapor-liquid-solid (VLS) process using metal catalysts such as Au, Ni, Pt, Cu. In the case, the impurity issues inside wire originated from metal catalyst are inevitable, leading to lowering the efficiency of solar cell. To escape from the problem, the wires of purity of wafer are the best for high efficiency of photovoltaic device. The fabrication of wire arrays by the electrochemical etching of silicon wafer with photolithography can solve the contamination of metal catalyst. In this presentation, we introduce silicon wire arrays by electrochemical etching method and then fabrication methods of radial p-n junction wire array solar cell and the various merits compared with conventional silicon solar cells.

  • PDF

The Influence Of The Cathode Surface State On The Spark Voltage In The Low Pressure Gare Gas (저기압희유 gas중에서 불꽃전압에 미치는 음극표면상태의 영향)

  • 백용현
    • 전기의세계
    • /
    • v.23 no.4
    • /
    • pp.46-52
    • /
    • 1974
  • Generally, it has been regarded that there are two kinds of the effect of the electrodes, especially of the cathode in the gas discharge, (a) the effect caused by the difference of the cathode meterial and (b) the effect by the change of the cathode surface state even in the same meterials. Thus the two effects must be investigated independently to study the roles of the cathode in gas discharges. This paper measured sparking voltage in Rare gas (Ar, He) for the change of sparking voltage in repeating sparks and for the effect of (a) and (b) mentioned above, under the condition that the desorption of impurities from the cathod can be nigligible, and it is obtained that the correlative relations of the work function, sparking voltage and secondary coefficient are comparatively simple. In addition, the interesting character of the minimum point of the paschen's curves is found. The results were as follows; 1) The value of (pd)min with minimum pint of sparking voltage, (Vs)min, is 0.7-0.9 Torr. cm in Argon, but is 5.6-7.1 Torr. cm in Helium, and Paschen's curve in Helium shows slow curve than in Argon. 2) The minimum point of the Paschen's curve is satisfied actually Townsend's self sustaining criterion in Argon, but non-satisfaction in Helium, and the Townsend's secondary coefficient .gamma. action have compound property (.gamma.$_{i}$, .gamma.$_{p}$, .gamma.$_{m}$) in Helium. 3) The dependenting character of work function in Helium is less than in Argon. 4) The minimum point of sparking voltage increase under oxidized electrode than clear electrode in Au and Ag, but minimum point decrease in Ni and Cu.

  • PDF

An Exploratory Study Comparing Blood Metal Concentrations between Stroke and Nonstroke Patients in Koreans

  • Park Yeong-Chul;Park Hae-Mo;Ko Seong-Gyu;Lee Sun-Dong;Park Hong-Duok
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.3
    • /
    • pp.199-206
    • /
    • 2006
  • Various heavy metals have been known for causing ischemic stroke. In order to describe the causative relationship between the blood levels of various heavy metals and stroke patients, 116 patients with stroke and 111 patients without stroke were selected from one Oriental medical hospital in Wonju, Korea. Total of 9 kinds of metals such as As, Cd, Co, Cu, Hg, Mn, Ni, Pb, and Zn were analyzed in blood from patients with and without stroke. There were no significant differences in the means of metal concentrations between the stroke and nonstroke patients except for the mean of Co concentration. In the case of Co, the means for stroke and non-stroke patients were 0.44 ug/l and 0.40 ug/l showing a significant difference at the level of p-value=0.05. The odds ratios for each metal ranged from 0.96 to 2.86. Most odds ratios were not significant but the odds ratio for Co, $2.86{\pm}1.49$ was significant, indicating that Co increases the risk of stroke by 2.86 times. In order to identify the specific risk level of stroke increased by a multiple interaction of metals, regression coefficients and odds ratio for a pair or multiple pair of metals were reanalyzed. However, all of regression coefficients and odds ratios were not significant. In conclusion, Co showed the significant level in blood from patients with stroke. In addition, the odds ratio of stroke was significantly different from other metals. Thus, it is considered that Co among various metals analyzed in this study is the important metal for increasing the risk of stroke.

Synthesis of Diazacrown Ethers Containing Phenolic Side Arms and Their Complex with Divalent Metal Ions

  • Chi, Ki-Whan;Ahn, Yoon-Soo;Shim, Kwang-Taeg;Huh, Hwang;Ahn, Jeong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.688-692
    • /
    • 2002
  • The aminomethylation of phenols with para-substituents by the Mannich reaction has successfully been accomplished to produce the Mannich bases 2-6. The compounds 7-8 have also been synthesized in order to identify the effect of the side arms and t he macrocycle in the complex formation. Protonation constants and stability constants of the double armed diaza-18-crown-6 ethers 2-7 with metal ions have been determined by potentiometric method at 25 $^{\circ}C$ in 95 % methanol solution. Under a basic condition (pH > 8.0), the double-armed crown ethers 2-6 revealed stronger interaction with divalent metal ions than the simple diazacrown ether 1. The stability constants with these metal ions were Co 2+ < Ni2+ < Cu2+ > Zn 2+ in increasing order, which are in accordance with the order of the Williams-Irving series. The stability constants with alkali earth metal ions were Ca 2+ < Sr 2+ < Ba 2+ in increasing order, which may be explained by the concept of size effect. It is noteworthy that the hosts 2-6, which have phenolic side arms and a macrocycle, bind stronger with metal ions than the hosts 1 and 7. On the other hand, the host 8, which has phenolic side arms with a pyperazine ring,provided comparable stability constants to those with the host 3. These facts demonstrate that phenolic side arms play a more important role than the azacrown ether ring in the process of making a complex with metal ions especially in a basic condition. In particular, the log KML values for complexation of divalent metal ions with the hosts 2-6 had the sequence, i.e., 2 (R=OCH3) < 3 (R=CH3) < 4 (R=H) < 5 (R=Cl) < 6 (R=CF3). The stability constants of the hosts 5 and 6 containing an electron-withdrawing group are larger than those of the hosts 2 and 3 containing an electron-donating group. This substituent effect is attributed to the solvent effect in which the aryl oxide with an electron-donating group has a tendency to be tied strongly with protic solvents.

A Comparison Study on the Concentration of Total Welding Fume and Respirable Particulate Mass for Welding Workers of a Shipbuilding (조선소 용접작업자들의 총용접흄과 호흡성분진농도 비교연구)

  • Kang, Yong-Seon;Sim, Sang-Hyo;Lee, Song-Kwon;Bin, Sung-Oh;Choi, Eun-Seok
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.4
    • /
    • pp.276-282
    • /
    • 2007
  • The purpose of this study is to assess the accurate state of the following: total welding fumes versus welding fumes in the air, respirable particulate mass, and exposure of dockyard welders to heavy metals. In addition, this study provides basic data for proposing improvements to create efficient and appropriate welding environments and to prevent occupational diseases. The subjects of this study were 94 laborers who worked at the block construction sites of large-scale dockyards located in Gyeongnam Province from March 2005 to June 2005. In order to collect samples on total welding fumes in the air and respirable particulate mass from the welders, Methods 0500 and 0600, established by the National Institute for Occupational Safety and Health (NIOSH), were used. The metals within the welding fumes were also analyzed using Inductively Coupled Plasma (ICP) under Method 7300 from NIOSH. The results of this research are summarized below. The geometric mean concentration of total welding fumes and that of respirable particulate mass were $4.11\;mg/m^3\;and\;3.53\;mg/m^3$, respectively. As a result of comparing the two measurement methods, there were significant differences (p<0.05) between the two groups for Ca, Cu, Cr, and Ni; however, there were no differences in Fe, Mg, Zn, Mg, Pb, and Cd. As a result of the analysis, the correlation between Mn and the concentration of heavy metals in the total welding fumes and respirable particulate mass was found to be -0.29, a significant negative correlation. The correlation between other heavy metals, however, was low. Finally, in the same total welding fumes, the correlation of Fe and Mg was high.