• 제목/요약/키워드: Cu-In-Ga powder

검색결과 20건 처리시간 0.024초

Warm Spray 공정과 Cu-Ga 및 Cu-In 혼합 분말을 이용한 CGI계 복합 코팅층의 제조 및 특성 (Manufacturing and Properties of CGI-based Composite Coating Layer Utilizing a Warm Spray Process and Cu-Ga and Cu-In Mixed Powders)

  • 전민광;이명주;김형준;이기안
    • 한국분말재료학회지
    • /
    • 제21권3호
    • /
    • pp.229-234
    • /
    • 2014
  • This study manufactured a CIG-based composite coating layer utilizing a new warm spray process, and a mixed powder of Cu-20at.%Ga and Cu-20at.%In. In order to obtain the mixed powder with desired composition, the Cu-20at.%Ga and Cu-20at.%In powders were mixed with a 7:1 ratio. The mixed powder had an average particle size of $35.4{\mu}m$. Through the utilization of a warm spray process, a CIG-based composite coating layer of $180{\mu}m$ thickness could be manufactured on a pure Al matrix. To analyze the microstructure and phase, the warm sprayed coating layer underwent XRD, SEM/EDS and EMPA analyses. In addition, to improve the physical properties of the coating layer, an annealing heat treatment was conducted at temperatures of $200^{\circ}C$, $400^{\circ}C$ and $600^{\circ}C$ for 1 hour each. The microstructure analysis identified ${\alpha}$-Cu, $Cu_4In$ and $Cu_3Ga$ phases in the early mixed powder, while $Cu_4In$ disappeared, and additional $Cu_9In_4$ and $Cu_9Ga_4$ phases were identified in the warm sprayed coating layer. Porosity after annealing heat treatment reduced from 0.75% (warm sprayed coating layer) to 0.6% (after $600^{\circ}C/1hr$. heat treatment), and hardness reduced from 288 Hv to 190 Hv. No significant phase changes were found after annealing heat treatment.

스퍼터링 타겟용 Cu-50In-13Ga 3원계 합금 분말의 소결 및 압연 거동 (Sintering and Rolling Behavior of Cu-50In-13Ga Ternary Alloy Powder for Sputtering Target)

  • 김대원;김용호;김정한;김대근;이종현;최광보;손현택
    • 한국분말재료학회지
    • /
    • 제19권4호
    • /
    • pp.264-270
    • /
    • 2012
  • In this study, we mainly focus on the study of densification of gas-atomized Cu-50 wt.%In-13 wt.%Ga alloy powder without occurrence of crack during the forming process. Cu-50 wt.%In-13 wt.%Ga alloy powder was consolidated by sintering and rolling processes in order to obtain high density. The phase and microstructure of formed materials were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical microscopy (OM), respectively. Warm rolling using copper can result in the improvement of density. The specimen obtained with 80% of rolling reduction ratio at $140^{\circ}C$ using cooper can have the highest density of $8.039g/cm^3$.

Manufacturing and Macroscopic Properties of Cold Sprayed Cu-Ga Coating Material for Sputtering Target

  • Jin, Young-Min;Jeon, Min-Gwang;Park, Dong-Yong;Kim, Hyung-Jun;Oh, Ik-Hyun;Lee, Kee-Ahn
    • 한국분말재료학회지
    • /
    • 제20권4호
    • /
    • pp.245-252
    • /
    • 2013
  • This study attempted to manufacture a Cu-Ga coating layer via the cold spray process and to investigate the applicability of the layer as a sputtering target material. In addition, changes made to the microstructure and properties of the layer due to annealing heat treatment were evaluated, compared, and analyzed. The results showed that coating layers with a thickness of 520 mm could be manufactured via the cold spray process under optimal conditions. With the Cu-Ga coating layer, the ${\alpha}$-Cu and $Cu_3Ga$ were found to exist inside the layer regardless of annealing heat treatment. The microstructure that was minute and inhomogeneous prior to thermal treatment changed to homogeneous and dense with a more clear division of phases. A sputtering test was actually conducted using the sputtering target Cu-Ga coating layer (~2 mm thickness) that was additionally manufactured via the cold-spray coating process. Consequently, this test result confirmed that the cold sprayed Cu-Ga coating layer may be applied as a sputtering target material.

저온분사법에 의해 제조된 Cu-Ga 타겟의 스퍼터링 특성평가 (Characterization of Films Sputtered with the Cu-Ga Target Prepared by the Cold Spray Process)

  • 조영지;유정호;양준모;박동용;김종균;최강보;장지호
    • 한국분말재료학회지
    • /
    • 제23권1호
    • /
    • pp.21-25
    • /
    • 2016
  • The microstructural properties and electrical characteristics of sputtering films deposited with a Cu-Ga target are analyzed. The Cu-Ga target is prepared using the cold spray process and shows generally uniform composition distributions, as suggested by secondary ion mass spectrometer (SIMS) data. Characteristics of the sputtered Cu-Ga films are investigated at three positions (top, center and bottom) of the Cu-Ga target by X-ray diffraction (XRD), SIMS, 4-point probe and transmission electron microscopy (TEM) analysis methods. The results show that the Cu-Ga films are composed of hexagonal and unknown phases, and they have similar distributions of composition and resistivity at the top, center, and bottom regions of the Cu-Ga target. It demonstrates that these films have uniform properties regardless of the position on the Cu-Ga target. In conclusion, the cold spray process is expected to be a useful method for preparing sputter targets.

스퍼터링 타겟용 저온 분사 Cu-15 at.%Ga 코팅 소재의 특성에 미치는 열처리 분위기의 영향 (Effect of Heat Treatment Environment on the Properties of Cold Sprayed Cu-15 at.%Ga Coating Material for Sputtering Target)

  • 최병철;박동용;김형준;오익현;이기안
    • 한국분말재료학회지
    • /
    • 제18권6호
    • /
    • pp.552-561
    • /
    • 2011
  • This study attempted to manufacture a Cu-15 at.%Ga coating layer via the cold spray process and investigated the effect of heat treatment environment on the properties of cold sprayed coating material. Three kinds of heat treatment environments, $5%H_2$+argon, pure argon, and vacuum were used in this study. Annealing treatments were conducted at $200{\sim}800^{\circ}C$/1 hr. With the cold sprayed coating layer, pure ${\alpha}$-Cu and small amounts of $Ga_2O_3$ were detected in the XRD, EDS, EPMA analyses. Porosity significantly decreased and hardness also decreased with increasing annealing temperature. The inhomogeneous dendritic microstructure of cold sprayed coating material changed to the homogeneous and dense one (microstructural evolution) with annealing heat treatment. Oxides near the interface of particles could be reduced by heat treatment especially in vacuum and argon environments. Vacuum environment during heat treatment was suggested to be most effective one to improve the densification and purification properties of cold sprayed Cu-15 at.%Ga coating material.

셀레늄과 세라믹 혼합분말을 사용한 Cu0.9In0.7Ga0.3Se2 분말층의 소결거동 연구 (Heat Treatment of Cu0.9In0.7Ga0.3Se2 Powder Layer with a Mixture of Selenium and Ceramic Powder)

  • 송봉근;황윤정;박보인;이승용;이재승;박종구;이도권;조소혜
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.115-119
    • /
    • 2014
  • $Cu(In,Ga)Se_2$ (CIGS) thin films have been used as a light absorbing layer in high-efficiency solar cells. In order to improve the quality of the CIGS thin film, often selenization step is applied. Especially when the thin film was formed by non-vacuum powder process, selenization can help to induce grain growth of powder and densification of the thin film. However, selenization is not trivial. It requires either the use of toxic gas, $H_2Se$, or expensive equipment which raises the overall manufacturing cost. Herein, we would like to deliver a new, simple method for selenization. In this method, instead of using a costly two-zone furnace, use of a regular tube furnace is required and selenium is supplied by a mixture of selenium and ceramic powder such as alumina. By adjusting the ratio of selenium vs. alumina powder, selenium vaporization can be carefully controlled. Under the optimized condition, steady supply of selenium vapor was possible which was evidently shown by large grain growth of CIGS within a thin powder layer.

Syntheses of Cu-In-Ga-Se/S nano particles and inks for solar cell applications

  • Jung, Duk-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.295-295
    • /
    • 2010
  • Nanoparticles of the compound semiconductor, Cu(In, Ga)Se2 (CIGS), were synthesized in solution under ambient pressure below $100^{\circ}C$ and characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), optical absorption spectroscopy and energy-dispersive X-ray (EDX) analyses. These materials have chalcopyrite crystal structures and the particle sizes less than 100 nm. Synthetic conditions were studied for the crystallized CIGS nanoparticles formation to prevent from side products of Cu2Se, Cu2-xSe, and CuSe etc. The single phase CIGS nanoparticles were applied to coating of thin films photovoltaic cells. The electro deposition of CIGS thin films is also a good non-vacuum technology and under investigation. In aqueous solutions, the different chemical compositions of CIGS thin films were obtained, depending on pH, concentration of starting materials and deposition potentials. The surface morphology of the prepared CIGS thin films depends on the complexing ligands to the solutions during the electrochemical deposition.

  • PDF

고특성 $Nd_{12}Fe_{80}B_{6}(Nb, M)$ (M=Ti/Cu/Ga)급속응고리본의 자기특성 (Magnetic Propwrties of High Quality $Nd_{12}Fe_{80}B_{6}(Nb, M)$ (M=Ti/Cu/Ga) Melt-Spun Ribbons)

  • 김윤배;김창석;김동환;이갑호;김택기
    • 한국자기학회지
    • /
    • 제2권1호
    • /
    • pp.44-49
    • /
    • 1992
  • 단롤법 급속응고기술을 이용하여 $Nd_{12}Fe_{80}B_{6}(Nb,\;M)$ (M=Ti/Cu/Ga) 리본을 제작하고 이의 자기특성 및 미세조작에 관한 연구를 하였다. X-선 회절 및 TEM을 이용한 미세조직 조사 결과, 리본의 이방화에 Ga이 효과적이며, 디스크표면속도 17.9 m/s로 제작한 $Nd_{12}Fe_{80}B_{6}(Nb,\;Ca)$ 리본은 약 30 nm의 미세한 결정립으로 구성되고 자유표면이 이방화된 조직으로 형성됨을 알았다. 이 리본을 분쇄하여 자장중에서 정렬시킨 분말의 잔류자속밀도는 0.87 T의 높은 값을 보였으며, 분쇄하기전 리본의 잔류자속밀도에 비하여 약 5% 정도 높았다. 이상의 결과로 부터 리본의 자유표면은 이방화가 되고 나머지 부분은 HIREM 특성을 나타내는 새로운 형태의 고특성 급속응고리본의 제조가 가능할 것으로 사료된다.

  • PDF

$Cu(In_{1-x}Ga_x)Se_2$ Thin Film Fabrication by Powder Process

  • Song, Bong-Geun;Cho, So-Hye;Jung, Jae-Hee;Bae, Gwi-Nam;Park, Hyung-Ho;Park, Jong-Ku
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.92-92
    • /
    • 2012
  • Chalcopyrite-type Cu(In,Ga)Se2 (CIGS) is one of the most attractive compound semiconductor materials for thin film solar cells. Among various approaches to prepare the CIGS thin film, the powder process offers an extremely simple and materials-efficient method. Here, we present the mechano-chemical synthesis of CIGS compound powders and their use as an ink material for screen-printing. During the synthesis process, milling time and speed were varied in the range of 10~600 min and 100~300 rpm, respectively. Both phase evolution and powder characteristics were carefully monitored by X-ray diffraction (XRD) method, scanning electron microscope (SEM) observation, and particle size analysis by scanning mobility particle spectrometer (SMPS) and aerodynamic particle sizer (APS). We found the optimal milling condition as 200 rpm for 120 min but also found that a monolithic phase of CIGS powders without severe particle aggregation was difficult to be obtained by the mechano-chemical milling alone. Therefore, the optimized milling condition was combined with an adequate heat-treatment (300oC for 60 min) to provide the monolithic CIGS powder of a single phase with affordable particle characteristics for the preparation of CIGS thin film. The powder was used to prepare an ink for screen printing with which dense CIGS thin films were fabricated under the controlled selenization. The morphology and electrical properties of the thin films were analyzed by SEM images and hall measurement, respectively.

  • PDF

CuInGaSe(CIGS)혼합 소스의 제작과 특성 (Characterizations of CuInGaSe(CIGS) mixed-source and the thin film)

  • 이아름;전헌수;이강석;옥진은;조동완;김경화;양민;이삼녕;안형수;조채용;손상호;하홍주
    • 한국결정성장학회지
    • /
    • 제20권1호
    • /
    • pp.1-6
    • /
    • 2010
  • 혼합소스 hydride vapor phase epitaxy(HVPE) 방법으로 CuInGaSe(CIGS) 혼합 소스를 형성하였다. 각 금속들은 일정 비율로 혼합하였고, $1090^{\circ}C$에서 1시간 30분간 soaking 하였다. 혼합된 소스를 분말형태로 만든 후, 직경 10 mm 크기의 pellet을 만들었다. 시료는 혼합소스 HVPE 에서 소성 한 후 e-beam 으로 Mo이 증착된 기판 위에 증착하였다. Scanning electron microscope(SEM), Energy dispersive X-ray spectrum(EDS) 그리고 X-ray diffraction(XRD) 측정을 통하여 그 특성을 분석하였으며 박막의 특성은 (112), (204)/(220), (116)/(312)그리고 (400) 방향 등의 다결정 특성을 나타내었다.