• Title/Summary/Keyword: Cu-Ga-In

Search Result 388, Processing Time 0.022 seconds

Improvement of Efficiency of Cu(Inx,Ga1-x)Se2 Thin Film Solar Cell by Enhanced Transparent Conductive Oxide Films (투명 전도막 개선을 통한 Cu(Inx,Ga1-x)Se2 박막태양전지 효율 향상에 관한 연구)

  • Kim, Kilim;Son, Kyeongtae;Kim, Minyoung;Shin, Junchul;Jo, Sunghee;Lim, Donggun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.203-208
    • /
    • 2014
  • In this study, Sputtering method was used to grow Al-dopes ZnO films on a CIGS absorber layer, in order to examine the effect of TCO on properties of CIGS solar cell devices. Structural, electrical and optical properties were investigated by varied thickness of Al-dopes ZnO films. Also, relation to the application as a window layer in CIGS thin film solar cell were studied. It was found that the electrical and structural properties of ZnO:Al film improved with increasing its thickness. However, the optical properties degraded. Jsc of the fabricated CIGS based solar cells was significantly influenced by the variation of the ZnO:Al window layer thickness. Because ZnO:Al window layer is one of the Rs factors in CIGS solar cell. Rs has the biggest influence on efficiency characteristic. In order to obtain high efficiency of CIGS solar cell, ZnO:Al window layer should be fabricated with electrically and optically optimized.

Morphology and Electro-Optical Property of Mo Back Electrode for CuInGaSe2 Solar Cells (CuInGaSe2 태양전지용 Mo 후면 전극의 조직 및 전기광학적 특성)

  • Chae, Su-Byung;Kim, Myung-Han
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.412-417
    • /
    • 2010
  • Mo thin films were used for the back electrode because of the low resistivity in the Mo/$CuInGaSe_2$ contact in chalcopyrite solar cells. $1\;{\mu}m$ thick Mo thin films were deposited on soda lime glass by varying the Ar pressure with the dc-magnetron sputtering process. The effects of the Ar pressure on the morphology of the Mo back electrode were studied and the relationships between the morphology and electro-optical properties, namely, the resistivity as well as the reflectance of the Mo thin films, were investigated. The resitivity increased from $24\;{\mu}{\Omega}{\cdot}cm$ to $11833\;{\mu}{\Omega}{\cdot}cm$; this was caused by the increased surface defect and low crystallinity as the Ar pressure increased from $3{\times}10^{-3}$ to $3{\times}10^{-2}\;Torr$. The surface morphologies of the Mo thin films changed from somewhat coarse fibrous structures to irregular and fine celled structures with increased surface cracks along the cell boundaries, as the Ar pressure increased from $3{\times}10^{-3}$ to $3{\times}10^{-2}\;Torr$. The changes of reflectances in the visible light range with Ar pressures were mainly attributed to the surface morphological changes of the Mo thin films. The reflectance in the visible light range showed the highest value of 45% at $3{\times}10^{-3}\;Torr$ and decreased to 18.5% at $3{\times}10^{-2}\;Torr$.

Heat Treatment of Cu0.9In0.7Ga0.3Se2 Powder Layer with a Mixture of Selenium and Ceramic Powder (셀레늄과 세라믹 혼합분말을 사용한 Cu0.9In0.7Ga0.3Se2 분말층의 소결거동 연구)

  • Song, Bong-Geun;Hwang, Yoonjung;Park, Bo-In;Lee, Seung Yong;Lee, Jae-Seung;Park, Jong-Ku;Lee, Doh-Kwon;Cho, So-Hye
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.115-119
    • /
    • 2014
  • $Cu(In,Ga)Se_2$ (CIGS) thin films have been used as a light absorbing layer in high-efficiency solar cells. In order to improve the quality of the CIGS thin film, often selenization step is applied. Especially when the thin film was formed by non-vacuum powder process, selenization can help to induce grain growth of powder and densification of the thin film. However, selenization is not trivial. It requires either the use of toxic gas, $H_2Se$, or expensive equipment which raises the overall manufacturing cost. Herein, we would like to deliver a new, simple method for selenization. In this method, instead of using a costly two-zone furnace, use of a regular tube furnace is required and selenium is supplied by a mixture of selenium and ceramic powder such as alumina. By adjusting the ratio of selenium vs. alumina powder, selenium vaporization can be carefully controlled. Under the optimized condition, steady supply of selenium vapor was possible which was evidently shown by large grain growth of CIGS within a thin powder layer.

Effect of the Substrate Temperature on the Characteristics of CIGS Thin Films by RF Magnetron Sputtering Using a $Cu(In_{1-x}Ga_x)Se_2$ Single Target

  • Jung, Sung-Hee;Kong, Seon-Mi;Fan, Rong;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.382-382
    • /
    • 2012
  • CIGS thin films have received great attention as a promising material for solar cells due to their high absorption coefficient, appropriate bandgap, long-term stability, and low cost production. CIGS thin films are deposited by various methods such as co-evaporation, sputtering, spray pyrolysis and electro-deposition. The deposition technique is one of the most important processes in preparing CIGS thin film solar cells. Among these methods, co-evaporation is one of the best technique for obtaining high quality and stoichiometric CIGS films. However, co-evaporation method is known to be unsuitable for commercialization. The sputtering is known to be very effective and feasible process for mass production. In this study, CIGS thin films have prepared by rf magnetron sputtering using a $Cu(In_{1-x}Ga_x)Se_2$ single quaternary target without post deposition selenization. This process has been examined by the effects of deposition parameters on the structural and compositional properties of the films. In addition, we will explore the influences of substrate temperature and additional annealing treatment after deposition on the characteristics of CIGS thin films. The thickness of CIGS films will be measured by Tencor-P1 profiler. The crystalline properties and surface morphology of the films will be analyzed using X-ray diffraction and scanning electron microscopy, respectively. The optical properties of the films will be determined by UV-Visible spectroscopy. Electrical properties of the films will be measured using van der Pauw geometry and Hall effect measurement at room temperature using indium ohmic contacts.

  • PDF

Effect of Process Variation of Al Grid and ZnO Transparent Electrode on the Performance of Cu(In,Ga)Se2 Solar Cells (Al 그리드와 ZnO 투명전도막 의 공정변화에 따른 Cu(In,Ga)Se2 박막태양전지의 특성 연구)

  • Cho, Bo Hwan;Kim, Seon Cheol;Mun, Sun Hong;Kim, Seung Tae;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.1
    • /
    • pp.32-38
    • /
    • 2015
  • CIGS solar cell consisted of various films. In this research, we investigated electrode materials in $Cu(In,Ga)Se_2$ (CIGS) cells, including Al-doped ZnO (ZnO:Al), intrinsic ZnO (i-ZnO), and Al films. The sputtered ZnO:Al film with a sputtering power at 200W showed the lowest series resistance and highest cell efficiency. The electrical resistivity of the 200-W sputtered ZnO:Al film was $5.2{\times}10^{-4}{\Omega}{\cdot}cm$ by the rapid thermal annealing at $200^{\circ}C$ for 1 min. The electrical resistivity of i-ZnO was not measurable due to its high resistance. But the optical transmittance was highest with less oxygen supply and high efficiency cell was achieved with $O_2/(Ar+O_2)$ ratio was 1% due to the increase of short-circuit current. No significant change in the cell performance by inserting a Ni layer between Al and ZnO:Al films was observed.

A Study on Selenization of Cu-In-Ga Precursors by Cracked Selenium (Cracked Selenium을 이용한 CIGS 박막 셀렌화 공정에 관한 연구)

  • Kim, Minyoung;Kim, Girim;Kim, Jongwan;Son, Kyeongtae;Lee, Jongkwan;Lim, Donggun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.503-509
    • /
    • 2013
  • In this study, $Cu(In_{1-x},Ga_x)Se_2$ (CIGS) thin films were prepared on the Mo coated soda-lime glass by the DC magnetron sputtering and a subsequent selenization process. For the selenization process, selenization rapid thermal process(RTP) with cracker cell, which was helpful to smaller an atomic of Se, was adopted. To make CIGS layer, they were then annealed with the cracked Se. Based on this selenization method, we made several CIGS thin film and investigated the effects of In deposition time, and selenization time. Through x-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM), it is found that the Mo/In/CuGa structure and the high sputtering power shows the dominant chalcopyrite structure and have a uniform distribution of the grain size. The CIGS films with the In deposition time of 5 min has the best structure due to the smooth surface. And CIGS films with the selenization time of 50 min show good crystalline growth without any voids.

Interface Analysis of Cu(In,Ga)Se2 and ZnS Formed Using Sulfur Thermal Cracker

  • Cho, Dae-Hyung;Lee, Woo-Jung;Wi, Jae-Hyung;Han, Won Seok;Kim, Tae Gun;Kim, Jeong Won;Chung, Yong-Duck
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.265-271
    • /
    • 2016
  • We analyzed the interface characteristics of Zn-based thin-film buffer layers formed by a sulfur thermal cracker on a $Cu(In,Ga)Se_2$ (CIGS) light-absorber layer. The analyzed Zn-based thin-film buffer layers are processed by a proposed method comprising two processes - Zn-sputtering and cracker-sulfurization. The processed buffer layers are then suitable to be used in the fabrication of highly efficient CIGS solar cells. Among the various Zn-based film thicknesses, an 8 nm-thick Zn-based film shows the highest power conversion efficiency for a solar cell. The band alignment of the buffer/CIGS was investigated by measuring the band-gap energies and valence band levels across the depth direction. The conduction band difference between the near surface and interface in the buffer layer enables an efficient electron transport across the junction. We found the origin of the energy band structure by observing the chemical states. The fabricated buffer/CIGS layers have a structurally and chemically distinct interface with little elemental inter-diffusion.

Analysis of the Current-voltage Curves of a Cu(In,Ga)Se2 Thin-film Solar Cell Measured at Different Irradiation Conditions

  • Lee, Kyu-Seok;Chung, Yong-Duck;Park, Nae-Man;Cho, Dae-Hyung;Kim, Kyung-Hyun;Kim, Je-Ha;Kim, Seong-Jun;Kim, Yeong-Ho;Noh, Sam-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.321-325
    • /
    • 2010
  • We analyze the current density - voltage (J - V) curve of a Cu(In,Ga)$Se_2$ (CIGS) thin-film solar cell measured at different irradiation power densities. For the solar-cell sample investigated in this study, the fill factor and power conversion efficiency decreased as the irradiation power density (IPD) increased in the range of 2 to 5 sun. Characteristic parameters of solar cell including the series resistance ($r_s$), the shunt resistance ($r_{sh}$), the photocurrent density ($J_L$), the saturation current density ($J_s$) of an ideal diode, and the coefficient ($C_s$) of the diode current due to electron-hole recombination via ionized traps at the p-n interface are determined from a theoretical fit to the experimental data of the J - V curve using a two-diode model. As IPD increased, both $r_s$ and $r_{sh}$ decreased, but $C_s$ increased.