• Title/Summary/Keyword: Cu paste

Search Result 129, Processing Time 0.024 seconds

Characterization of a Hybrid Cu Paste as an Isotropic Conductive Adhesive

  • Eom, Yong-Sung;Choi, Kwang-Seong;Moon, Seok-Hwan;Park, Jun-Hee;Lee, Jong-Hyun;Moon, Jong-Tae
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.864-870
    • /
    • 2011
  • As an isotropic conductive adhesive, that is, a hybrid Cu paste composed of Cu powder, solder powder, and a fluxing resin system, has been quantitatively characterized. The mechanism of an electrical connection based on a novel concept of electrical conduction is experimentally characterized using an analysis of a differential scanning calorimeter and scanning electron microscope energy-dispersive X-ray spectroscopy. The oxide on the metal surface is sufficiently removed with an increase in temperature, and intermetallic compounds between the Cu and melted solder are simultaneously generated, leading to an electrical connection. The reliability of the hybrid Cu paste is experimentally identified and compared with existing Ag paste. As an example of a practical application, the hybrid Cu paste is used for LED packaging, and its electrical and thermal performances are compared with the commercialized Ag paste. In the present research, it is proved that, except the optical function, the electrical and thermal performances are similar to pre-existing Ag paste. The hybrid Cu paste could be used as an isotropic conductive adhesive due to its low production cost.

Copper Paste 소성거동과 전기적 특성의 상관관계

  • Gong, Dal-Seong;Han, Gil-Sang;Jin, Yeong-Un;Jeong, Hyeon-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.206.1-206.1
    • /
    • 2014
  • 최근 전자 장비의 금속 전도성 패턴 제작에 있어서 직접적인 프린트가 가능한 프린팅 기술이 기존의 복잡한 photolithography 를 대체할 기술로 주목 받고 있다. 이와 함께 금속 전도성 패턴 제작에 사용되는 고가의 전도성 물질인 Ag ink 및 paste 를 저가의 Cu ink 및 paste 로 대체하기 위한 연구가 진행되고 있다. 하지만 일반적으로 copper 는 대기 중 에서 쉽게 산화되어 높은 저항을 야기시킨다. 따라서 Cu ink 또는 paste 를 제작할 때 copper nanoparticles 을 유기 용매에 분산하여 inert atmosphere에서 합성하거나 [1] copper ink 또는 paste 를 substrate 에 프린트하여 reduction atmosphere 에서 소성시킨다 [2]. 이번 연구에서 Cu paste 를 유리 기판에 screen printing 하여 혼합가스(질소 95%, 수소 5%)와 질소 가스 분위기에서 소성하여 Cu 전극의 소성 거동과 전기적 특성을 분석하였다. 4-point probe를 통해 소성된 Cu 전극의 저항을 측정하여 전도도를 조사하였으며 Thermal Gravimetric Analysis (TGA), Fourier Transform Infrared(FTIR)를 통해 소성된 Cu 전극의 유기물 분해가 전도도에 미치는 영향을 분석하고 Field Emission Scanning Electron Microscopy (FESEM)과 High Resolution Transmission Electron Microscopy (HRTEM)을 통해 Cu nanoparticles 의 grain growth가 전도도에 미치는 영향을 조사하였다.

  • PDF

Synthesis of Cu Sintering Paste Using Growth of Nanofiber on Cu Microparticles Mixed with Formic Acid (포름산 혼합 나노섬유 성장 구리마이크로입자를 이용한 구리 소결 페이스트 합성)

  • Young Un Jeon;Ji Woong Chang
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.96-99
    • /
    • 2024
  • A sintering paste for bonding copper plates was synthesized using Cu formate nanofibers on Cu microparticles, mixed with formic acid. Copper oxide nanofibers of 10 ㎛ grown at 400 ℃ on Cu microparticles on the surface were transformed into copper formate nanofibers through the mixing of formic acid. Compared to Cu bulk particles or nanoparticles, Cu formate on Cu microparticles decomposed into metallic Cu at a lower temperature of 210 ℃, facilitating the sintering of copper paste. The growth of nanofiber on Cu microparticles allowed for an increase in the reaction rate of formation to copper formate, aggregating surface area, and decomposition rate of copper formate, resulting in fast sintering.

Development of Copper Electro-Plating Technology on a Screen-Printed Conductive Pattern with Copper Paste

  • Eom, Yong-Sung;Son, Ji-Hye;Lee, Hak-Sun;Choi, Kwang-Seong;Bae, Hyun-Cheol;Choi, Jeong-Yeol;Oh, Tae-Sung;Moon, Jong-Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.51-54
    • /
    • 2015
  • An electro-plating technology on a cured isotropic conductive pattern with a hybrid Cu paste composed of resin matrix, copper, and solder powders has been developed. In a conventional technology, Ag paste was used to perform a conductive pattern on a PCB or silicon substrate. From previous research, the electrical conductive mechanism and principle of the hybrid Cu paste were concisely investigated. The isotropic conductive pattern on the PCB substrate was performed using screen-printing technology. The optimum electro-plating condition was experimentally determined by processing parameters such as the metal content of the hybrid Cu paste, applied current density, and time for the electroplating in the plating bath. The surfaces and cross-sections were observed using optical and SEM photographs. In conclusion, the optimized processing conditions for Cu electro-plating technology on the conductive pattern were a current density of $40mA/cm^2$ and a plating time of 20min on the hybrid Cu paste with a metal content of 44 vol.%. More details of the mechanical properties and processing conditions will be investigated in further research.

A Study on Powder Electroluminescencent Device using ZnS:Cu (ZnS:CU를 이용한 후막 전계 발광소자에 관한 연구)

  • 이종찬;박대희;박용규
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.121-124
    • /
    • 1998
  • Generally the structure of powder electroluminescent devices (PELDs) on ITO-film was makeup of the ZnS:Cu phosphor layer and BaTiO$_3$ insulating layer. The active layer, which consists of a suitably doped ZnS powder mixed in a dielectric, is sandwiched between two electrodes; one of which are ITO film and the other is aluminum. In this paper, three kinds of powder eleotroluminescent devices (PELDs) : WK-A(ITO/BaTiO$_3$/ZnS:Cu/Silver paste). WK-B(ITO/BaTiO$_3$+ZnS:Cu/Silver paste) and WK-C(ITO/BaTiO$_3$/ZnS:Cu/BaTiO$_3$/Silver paste), fabricated by spin coating method, were investigated. To evaluate the luminescence properties of three kinds of PELDs, EL emission spectroscopy, transferred charge density and time response of EL emission intensity under square wave voltage driving were measured.

  • PDF

Fabrication and Characterization of Silver Copper(I) Oxide Nanoparticles for a Conductive Paste (은이 코팅된 Copper(I) Oxide 나노 입자 및 도전성 페이스트의 제조 특성)

  • Park, Seung Woo;Son, Jae Hong;Sim, Sang Bo;Choi, Yeon Bin;Bae, Dong Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • This study investigates Ag coated $Cu_2O$ nanoparticles that are produced with a changing molar ratio of Ag and $Cu_2O$. The results of XRD analysis reveal that each nanoparticle has a diffraction pattern peculiar to Ag and $Cu_2O$ determination, and SEM image analysis confirms that Ag is partially coated on the surface of $Cu_2O$ nanoparticles. The conductive paste with Ag coated $Cu_2O$ nanoparticles approaches the specific resistance of $6.4{\Omega}{\cdot}cm$ for silver paste(SP) as $(Ag)/(Cu_2O)$ the molar ratio increases. The paste(containing 70 % content and average a 100 nm particle size for the silver nanoparticles) for commercial use for mounting with a fine line width of $100{\mu}m$ or less has a surface resistance of 5 to $20{\mu}{\Omega}{\cdot}cm$, while in this research an Ag coated $Cu_2O$ paste has a larger surface resistance, which is disadvantageous. Its performance deteriorates as a material required for application of a fine line width electrode for a touch panel. A touch panel module that utilizes a nano imprinting technique of $10{\mu}m$ or less is expected to be used as an electrode material for electric and electronic parts where large precision(mounting with fine line width) is not required.

Sonochemical Synthesis of Copper-silver Core-shell Particles for Conductive Paste Application (초음파를 이용한 구리-은 코어-쉘의 합성 및 전도성 페이스트 적용)

  • Sim, Sang-Bo;Han, Jong-Dae
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.782-788
    • /
    • 2018
  • Submicron copper-silver core-shell (Cu@Ag) particles were synthesized using the sonochemical combined transmetallation reaction and the application to printed electronics as a low cost conductive paste was evaluated. $Cu_2O$ of the $Cu_2O/Cu$ composite used as a core in the reaction for the synthesis of core-shell was sonochemically reduced to Cu, and Cu atoms functioned as a reducer for silver ions in transmetallation to achieve the copper-silver core-shell structure. The characterization of submicron particles by TEM-EDS and TG-DSC confirmed the core-shell structure. Conductive pastes in which 70 wt% Cu@Ag was dispersed in solvents were prepared using a binder and wetting agents, and coated on the polyamide film using a screen-printing method. Printed paste films containing synthesized Cu@Ag particles with 8 at% and 16 at% Ag exhibited low resistivity of 96.2 and $38.4{\mu}{\Omega}cm$ after sintering at $180^{\circ}C$ in air, respectively.

Investigation of Ag Migration from Ag Paste Bump in Printed Circuit Board (Ag Paste bump 구조를 갖는 인쇄회로기판의 Ag migration 발생 안전성 평가)

  • Song, Chul-Ho;Kim, Young-Hun;Lee, Sang-Min;Mok, Jee-Soo;Yang, Yong-Suk
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • The current study examined Ag migration from the Ag paste bump in the SABiT technology-applied PCB. A series of experiments were performed to measure the existence/non-existence of Ag in the insulating prepreg region. The average grain size of Ag paste was 30 nm according to X-ray diffraction (XRD) measurement. Conventional XRD showed limitations in finding a small amount of Ag in the prepreg region. The surface morphology and cross section view in the Cu line-Ag paste bump-Cu line structure were observed using a field emission scanning electron microscope (FE-SEM). The amount of Ag as a function of distance from the edge of Ag paste bump was obtained by FE-SEM with energy dispersive spectroscopy (EDS). We used an electron probe micro analyzer (EPMA) to improve the detecting resolution of Ag content and achieved the Ag distribution function as a function of the distance from the edge of the Ag paste bump. The same method with EPMA was applied for Cu filled via instead of Ag paste bump. We compared the distribution function of Ag and Cu, obtained from EPMA, and concluded that there was no considerable Ag migration effect for the SABiT technology-applied printed circuit board (PCB).

Electrical Resistivity and Thermal Conductivity of Paste Containing Ag-coated Cu Flake Filler (Ag 코팅 Cu 플레이크 필러를 사용한 도전 페이스트의 전기 및 열전도도)

  • Kim, Gahae;Jung, Kwang-Mo;Moon, Jong-Tae;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.51-56
    • /
    • 2014
  • After the preparation of low-cost conductive paste containing Ag-coated Cu flakes, thermal conductivity and electrical resistivity of the paste were measured with different curing conditions. Under air-curing conditions, the thermal conductivity of the cured sample increased with an increase of curing time from 30 to 60 min. After identical curing time of 60 min, the sample cured under nitrogen indicated more enhanced thermal conductivity than that cured under air, approaching that of paste containing pure Ag flakes. Under air-curing conditions, meanwhile, the electrical resistivity of the cured sample increased with an increase of curing time from 30 to 60 min. After identical curing time of 60 min, however, the sample cured under nitrogen indicated extremely enhanced electrical resistivity ($7.59{\times}10^{-5}{\Omega}{\cdot}cm$) in comparison with that cured under air.

Printing Morphology and Rheological Characteristics of Lead-Free Sn-3Ag-0.5Cu (SAC) Solder Pastes

  • Sharma, Ashutosh;Mallik, Sabuj;Ekere, Nduka N.;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.83-89
    • /
    • 2014
  • Solder paste plays a crucial role as the widely used joining material in surface mount technology (SMT). The understanding of its behaviour and properties is essential to ensure the proper functioning of the electronic assemblies. The composition of the solder paste is known to be directly related to its rheological behaviour. This paper provides a brief overview of the solder paste behaviour of four different solder paste formulations, stencil printing processes, and techniques to characterize solder paste behaviour adequately. The solder pastes are based on the Sn-3.0Ag-0.5Cu alloy, are different in their particle size, metal content and flux system. The solder pastes are characterized in terms of solder particle size and shape as well as the rheological characterizations such as oscillatory sweep tests, viscosity, and creep recovery behaviour of pastes.