• Title/Summary/Keyword: Cu mineralization

Search Result 97, Processing Time 0.029 seconds

Mineralization of Hydrothermal Ore Deposits in Relation to Chemical Variation of the Cretaceous Granitoids in the Gyeongsang Basin (경상분지내 열수광상의 광화작용과 백악기 화강암류의 화학성분 변화와의 관계)

  • Lee, Jae Yeong;Lee, Jin Kook;Lee, In Ho;Kim, Sang Wook
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.363-373
    • /
    • 1994
  • The Cretaceous granitic rocks show differences in rock types and chemical compositions according to metallogenic provinces of copper, lead zinc and molybdenum in the Gyeongsang basin. Jindong granites are of granodiorite~quartz diorite~diorite in Cu-province; Makeunsan/Yucheon-Eonyang granites, granodiorite~granite in Pb Zn-province; Onjeongri-Yeonghae granites, granodiorite~quartz diorite in Mo-province, and there is a trend that productive masses are less differenciated than barren masses in Cu and Pb-Zn provinces whereas productive masses are more differenciated than barren masses in Mo province. Metallogenic provinces are distinguishable by variations of major and trace elements. The Cretaceous granitic rocks are highest in the content of Ca, Mg and other basic major elements and lowest in the content of K and Na in Cu provicne; the variation trends are vice versa in Pb-Zn province. Trace elements such as Rb and Sr show variations related to K and Ca, and metallogenic provinces are also distinguishable by their ratios. The granitic rocks of Mo province have intermediate content of major and trace elements, but are clearly distinguishable from Jindong granites and partly overlapped by Yucheon-Eonyang granites. Chlorine content in biotites is higher in a productive mass than in a barren mass in Cu province. Therefore, the mineralogical and chemical compositions are applicable as geochemical index to distinguish the types of mineralizaion, and productive and barren masses of the Cretaceous granitic rocks in the Gyeongsang basin.

  • PDF

Mineralogical studies and extraction of some valuable elements from sulfide deposits of Abu Gurdi area, South Eastern Desert, Egypt

  • Ibrahim A. Salem;Gaafar A. El Bahariya;Bothina T. El Dosuky;Eman F. Refaey;Ahmed H. Ibrahim;Amr B. ElDeeb
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.47-62
    • /
    • 2024
  • Abu Gurdi area is located in the South-eastern Desert of Egypt which considered as volcanic massive sulfide deposits (VMS). The present work aims at investigating the ore mineralogy of Abu Gurdi region in addition to the effectiveness of the hydrometallurgical route for processing these ores using alkaline leaching for the extraction of Zn, Cu, and Pb in the presence of hydrogen peroxide, has been investigated. The factors affecting the efficiency of the alkaline leaching of the used ore including the reagent composition, reagent concentration, leaching temperature, leaching time, and Solid /Liquid ratio, have been investigated. It was noted that the sulfide mineralization consists mainly of chalcopyrite, sphalerite, pyrite, galena and bornite. Gold is detected as rare, disseminated crystals within the gangue minerals. Under supergene conditions, secondary copper minerals (covellite, malachite, chrysocolla and atacamite) were formed. The maximum dissolution efficiencies of Cu, Zn, and Pb at the optimum leaching conditions i.e., 250 g/L NaCO3 - NaHCO3 alkali concentration, for 3 hr., at 250 ℃, and 1/5 Solid/liquid (S/L) ratio, were 99.48 %, 96.70 % and 99.11 %, respectively. An apparent activation energy for Zn, Cu and Pb dissolution were 21.599, 21.779 and 23.761 kJ.mol-1, respectively, which were between those of a typical diffusion-controlled process and a chemical reaction-controlled process. Hence, the diffusion of the solid product layer contributed more than the chemical reaction to control the rate of the leaching process. High pure Cu(OH)2, Pb(OH)2, and ZnCl2 were obtained from the finally obtained leach liquor at the optimum leaching conditions by precipitation at different pH. Finally, highly pure Au metal was separated from the mineralized massive sulfide via using adsorption method.

Geology, Mineralization, and Age of the Pocheon Fe(-Cu) Skarn Deposit, Korea (한국 포천 철(-동) 스카른 광상의 지질, 광화작용 및 생성연대)

  • Kim, Chang Seong;Go, Ji Su;Choi, Seon-Gyu;Kim, Sang-Tae
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.317-333
    • /
    • 2014
  • The Pocheon iron (-copper) deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, genetically remains controversial. Previous researchers advocated a metamorphosed (-exhalative) sedimentary origin for iron enrichment. In this study, we present strong evidences for skarnification and Fe mineralization, spatially associated with the Myeongseongsan granite. The Pocheon deposit is composed of diverse carbonate rocks such as dolostone and limestone which are partially overprinted by various hydrothermal skarns such as sodic-calcic, calcic and magnesian skarn. Iron (-copper) mineralization occurs mainly in the sodic-calcic skarn zone, locally superimposed by copper mineralization during retrograde stage of skarn. Age data determined on phlogopites from retrograde skarn stage by Ar-Ar and K-Ar methods range from $110.3{\pm}1.0Ma$ to $108.3{\pm}2.8Ma$, showing that skarn iron mineralization in the Pocheon is closely related to the shallow-depth Myeongseongsan granite (ca. 112 Ma). Carbon-oxygen isotopic depletions of carbonates in marbles, diverse skarns, and veins can be explained by decarbonation and interaction with an infiltrating hydrothermal fluids in open system ($XCO_2=0.1$). The results of sulfur isotope analyses indicate that both of sulfide (chalcopyrite-pyrite composite) and anhydrites in skarn have very high sulfur isotope values, suggesting the $^{34}S$ enrichment of the Pocheon sulfide and sulfate sulfur was derived from sulfate in the carbonate protolith. Shear zones with fractures in the Pocheon area channeled the saline, high $fO_2$ hydrothermal fluids, resulting in locally developed intense skarn alteration at temperature range of about $500^{\circ}$ to $400^{\circ}C$.

Occurrence and Geochemistry of Argyrodite, a Germanium-Bearing Mineral(Ag8GeS6), from the Weolyu Ag-Au Hydrothermal Vein Deposits (월류(月留) 은(銀)-금(金) 열수광상(熱水鑛床)에서 산출된 함(含) Ge 광물(鑛物)인 Argyrodite의 산상(産狀)과 지구화학(地球化學))

  • So, Chil-Sup;Yun, Seong-Taek;Choi, Seon-Gyu
    • Economic and Environmental Geology
    • /
    • v.26 no.2
    • /
    • pp.117-127
    • /
    • 1993
  • Ag-Au vein ores from the Weolyu mine, Youngdong district, contain significant germanium (up to 145g/t, average 34.9g/t), in the form of argyrodite ($Ag_8GeS_6$). Mineral chemistries of argyrodite and its associated minerals were determined by electron probe microanalysis. Twenty eight elements in thirteen ore samples were analyzed using an ICP mass spectrometer. Argyrodite occurs in the paragenetically later mineral assemblage consisting of carbonates+quartz+native silver+argentite+Ag-sulfosalts, indicating that the germanium mineralization represents the culmination of a complex mineral sequence which includes early gold and late silver deposition. The mean formula of the argyrodite is $Ag_{7.90}\;(Ge_{0.76}Sn_{0.04})S_6$, with minor amounts of Cu, Fe, Sb, As, Sn, and Zn. The Weolyu argyrodite shows systematic substitutions of Ag by Cu, and of Ge by Sb. Chemical analyses of vein ores indicate that metals were precipitated in the order of $Fe{\rightarrow}Pb$, $Zn{\rightarrow}Cu{\rightarrow}Ag$, Sb, As, Ge. Germanium has a strong geochemical affmity with As and Sb, and Cu, Pb, Zn, Mo, and Sr show weak positive correlations with Ge. Germanium deposition at Weolyu was mainly a result of cooling of hydrothermal fluids (down to $175^{\circ}C{\sim}210^{\circ}C$, due to increasing involvement of cooler meteoric waters in the epithermal system.

  • PDF

Stannite from the Janggun Mine, Republic of Korea -Contributions to the Knowledge of Ore-Forming Minerals in the Janggun Lead-Zinc-Silver (3)- (한국(韓國) 장군광산(將軍鑛山)의 황석석(黃錫石)에 대(對)하여 -장군(將軍) 연(鉛)·아연(亞鉛)·은(銀) 광석광물(鑛石鑛物)의 지식(知識)에의 기여(寄與) (3)-)

  • Lee, Hyun Koo;Imai, Naoya
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.121-130
    • /
    • 1986
  • In the Janggun mine, stannite occurs as anhedral grains, up to 500 micrometer in long dimension, closely associated with sphalerite, chalcopyrite, arsenopyrite, pyrrhotite, galena and rhodochrosite in the periphery of the South ore body. In reflected light, stannite is grayish yellow green in color and exhibits moderate bireflectance and strong anisotropism without any intenal reflections. Reflection; Rmax. =29.0, Rmin. =27.8 percent at a wavelength of 560nm, and VHN; 219~244kg/mm at a 50g load. The chemical composition on the average from 35 spot analyses by electron microprobe is, Cu 28.0, Fe 12.7, Zn 2.9, Mn 0.2, Sn 25.8, S 30.3, sum 99.9 (all in weight percent); the corresponding chemical formula as calculated on the basis of total atoms=8 is, Cu 1.88 Fe 0.97 Zn 0.19 Mn 0.02 Sn 0.93 S 4.01, which fulfills approximately the ideal formula of $Cu_2FeSnS_4$. The strongest reflections on the X-ray diffraction patterns are; $3.10{\AA}$ (10) (112), $2.72{\AA}$ (5) (020, 004), $1.922{\AA}$ (5) (024), $1.642{\AA}$ (3) (132), $1.244{\AA}$ (3) (143, 136, 235), $1.111{\AA}$(3) (244), $0.958{\AA}$ (1) (048, 422), the patterns are identical with those of literature. From the textural evidence of the microscopic observation, the mineral is considered to have been formed at the middle stage of hydrothermal lead-zinc-silver mineralization.

  • PDF

A Geochemical Study of Gold Skarn Deposits at the Sangdong Mine, Korea (상동광산 금스카른광상의 지구화학적 연구)

  • Lee, Bu Kyung;John, Yong Won
    • Economic and Environmental Geology
    • /
    • v.31 no.4
    • /
    • pp.277-290
    • /
    • 1998
  • The purpose of this research is to investigate the dispersion pattern of gold during skarnization and genesis of gold mineralization in the Sangdong skarn deposits. The Sangdong scheelite orebodies are embedded in the Cambrian Pungchon Limestone and limestone interbedded in the Myobong Slate of the Cambrian age. The tungsten deposits are classified as the Hangingwall Orebody, the Main Orebody and the Footwall Orebody as their stratigraphic locations. Recently, the Sangdong granite of the Cretaceous age (85 Ma) were found by underground exploratory drillings below the orebodies. In geochemisty, the W, Mo, Bi and F concentrations in the granite are significantly higher than those in the Cretaceous granitoids in southern Korea. Highest gold contents are associated with quartz-hornblende skarn in the Main Orebody and pyroxene-hornblende skarn in the Hangingwall Orebody. Also Au contents are closely related to Bi contents. This could be inferred that Au skarns formed from solutions under reduced environment at a temperature of $270^{\circ}C$. According to the multiple regression analysis, the variation of Au contents in the Main Orebody can be explained (87.5%) by Ag, As, Bi, Sb, Pb, Cu. Judging from the mineralogical, chemical and isotope studies, the genetic model of the deposits can be suggested as follows. The primitive Sangdong magma was enriched in W, Mo, Au, Bi and volatiles (metal-carriers such as $H_2O$, $CO_2$ and F). During the upward movement of hydrothermal ore solution, the temperature was decreased, and W deposits were formed at limestone (in the Myobong Slate and Pungchon Limestone). In addition, meteoric water influx gave rise to the retrogressive alterations and maximum solubility of gold, and consequently higher grade of Au mineralization was deposited.

  • PDF

Geochemical Data Analysis of the Granitic Rocks Potentially Related to Fluorite Mineralization in the Geumsan District (금산지역 형석광화작용과 관련된 화강암질암의 지구화학적 자료 해석)

  • Chin, Ho-Ill;Chon, Hyo-Taek;Min, Kyoung-Won
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.369-379
    • /
    • 1995
  • About forty ore deposits of $CaF_2{\pm}Au{\pm}Ag{\pm}Cu{\pm}Pb{\pm}Zn$ are widely distributed in the Geumsan district and are believed to be genetically related to the Mesozoic Geumsan granitic rocks. Based on their petrogeochemistry and isotopic dating data, the granitic rocks in this district can be classified into two groups ; the Jurassic granitic rocks(equigranular leucocratic granite, porphyritic biotite granite, porphyritic pink-feldspar granite, seriate leucocratic granite) and the Cretaceous granitic rocks(seriate pink-feldspar granite, equigranular alkali-feldspar granite, equigranular pink-feldspar granite, miarolitic pink-feldspar granite, equigranular biotite granite). Spatial distribution of fluorite ore deposits, fluorine contents of granitic rocks and fracture patterns in this district suggest that three granitic rocks(equigranular biotite granite, equigranular pink-feldspar granite, miarolitic pink-feldspar granite) of the Cretaceous period be genetically related to the fluorite mineralization. In these fluorite-related granitic rocks, fluorine is most highly correlated with Cs(correlation coefficient(r)>0.9), and also highly with MnO, U, Sm, Yb, Lu, Zn, Y, Li(r>0.7). Statistically the variation of fluorine in the fluorite-related granitic rocks can be explained in terros of only three elements, such as Lu, CaO and Cs, and the fluorite-related granitic rocks can be discriminated from the fluorite-nonrelated granitic rocks by a linear functional equation of La, Ce, Cs and F($Z_{Ust}=-1.38341-0.00231F-0.19878Ce+0.38169La+0.54720Cs$). Also, equigranular alkali-feldspar granite is classified into the fluorite-related granitic rocks by means of the linear functional equation($Z_{Ust}$).

  • PDF

Ore minerals and Genetic Environments from the Baekun Gold-silver Deposit, Republic of Korea (백운 금-은광상에서 산출되는 광석광물과 생성환경)

  • Yoo, Bong-Chul;Lee, Hyun-Koo;Kim, Ki-Jung
    • Economic and Environmental Geology
    • /
    • v.39 no.1 s.176
    • /
    • pp.9-25
    • /
    • 2006
  • Baekun gold-silver deposit is an epithermal quartz vein that is filling the fault zone within Triassic or Jurassic foliated granodiorite. Mineralization is associated with fault-breccia zones and can be divided into two stages. Stage I which can be subdivided early and late depositional stages is main ore mineralization and stage II is barren. Early stage I is associated with wallrock alteration and the formation of sulfides such as arsenopyrite, pyrite, pyrrhotite, sphalerite, marcasite, chalcopyrite, stannite, galena. Late stage I is characterized by Au-Ag mineralization such as electrum, Ag-bearing tetrahedrite, stephanite, boulangerite, pyrargrite, argentite, schirmerite, native silver, Ag-Te-Sn-S system, Ag-Cu-S system, pyrite, chalcopyrite and galena. Fluid inclusion data indicate that homogenization temperatures and salinity of stage I range from $171.6^{\circ}C\;to\;360.8^{\circ}C\;and\;from\;0.5\;to\;10.2\;wt.\%\;eq.$ NaCl, respectively. It suggest that ore forming fluids were cooled and diluted with the mixing of meteoric water. Also, Temperature (early stage I: $236\~>380^{\circ}C,\;$ late stage $I: <197\~272^{\circ}C$) and sulfur fugacity (early stage $I:\;10^{-7.8}$ a atm., late stage I: $10^{-14.2}\~10^{-l6}atm$.) deduced mineral assemblages from stage 1 decrease with paragenetic sequence. Sulfur ($2.4\~6.1\%_{\circ}$(early stage $I=3.4\~5.3\%_{\circ},\;late\;stage\;I=2.4\~6.1\%_{\circ}$)), oxygen ($4.5\~8.8\%_{\circ}$(quartz: early stage $I=6.3\~8.8\%_{\circ}$, late stage $I=4.5\~5.6\%_{\circ}$)), hydrogen ($-96\~-70\%_{\circ}$ (quartz: early stage $I=-96\~-70\%_{\circ},\;late\;stage\;f=-78\~-74\%_{\circ},\;calcite:\;late\;stage\;I=-87\~-76\%_{\circ}$)) and carbon ($-6.8\~-4.6\%_{\circ}$ (calcite: late stage I)) isotope compositions indicated that hydrothermal fluids may be magmaticorigin with some degree of mixing of another meteoric water for paragenetic time.

Dietary Calcium and Non-phytin Phosphorus Interaction on Growth, Bone Mineralization and Mineral Retention in Broiler Starter Chicks

  • Rao, S.V. Rama;Raju, M.V.L.N.;Reddy, M.R.;Pavani, P.;Sunder, G. Shyam;Sharma, R.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.5
    • /
    • pp.719-725
    • /
    • 2003
  • An experiment was conducted to study the requirement of calcium (Ca) and non-phytin phosphorus (NPP) in commercial broilers during starter phase. Seven hundred and twenty day-old Vencob male broiler chicks were randomly distributed into 144 stainless steel battery brooders, 5 birds in each. Four levels each of Ca (6, 7, 8, and 9 g/kg) and NPP (3, 3.5, 4, and 4.5 g/kg diet) were fed in a factorial design in a corn-soya basal diet. Levels of dicalcium phosphate and oyster shell grit were adjusted to obtain the desired levels of Ca and NPP. Each diet was fed ad libidum to chicks in 9 battery brooders from one d to 21 d of age. Body weight gain and feed intake were depressed (p<0.01) by increasing the dietary Ca level (8 and 9 g/kg) at lower levels of NPP (3 and 3.5 g/kg diet). The growth depression observed at lower NPP level was alleviated by reducing the Ca content to 6 g/kg diet. The tibia ash content and tibia breaking strength increased with increase in both Ca (>6 g/kg) and NPP (>3 g/kg) levels. The leg abnormality score decreased (p<0.01) with increase in NPP content in the diet at all levels of Ca tested. The serum Ca and inorganic P levels were increased with increase in the level of the respective mineral in the diet, but the serum concentration of Ca and P were inversely related to the level of NPP and Ca, respectively /kg diet. In general, the excretion of macro minerals (Ca, and P), and micro minerals {zinc (Zn), manganese (Mn), iron (Fe), and copper (Cu)} was significantly lower at lower levels of Ca and NPP tested (6 and 3 g/kg diet, respectively). The mineral excretion increased with increase in dietary Ca and NPP levels, more conspicuously at the disproportionate ratio of these minerals (>2:1, Ca and NPP). Similarly, the retention of Zn, Mn, and Fe in liver was significantly higher (p<0.01) at lower levels of Ca and NPP tested. Results from this study indicate that the commercial broilers do not require more than 3 g NPP and 6g Ca/kg diet during starter phase (up to 21 d of age) for optimum weight gain, feed efficiency and utilization of Ca, P, Zn, Mn, Fe and Cu. However, the requirements of these minerals for optimum bone mineralization were higher than the levels suggested above.

New Geochronological and Lead Isotopic Data for Porphyry-Skarn Cu-Mo-Au Deposits in the Andahuaylas-Yauri Batholith, Southeastern Part of Peru (페루 남동부 안다우아일라스-야우리 저반에 부존하는 반암-스카른 동-몰리브데늄-금광상의 새로운 지질연대 및 납동위원소 자료)

  • Acosta, Jorge;Heo, Chul-Ho;Villarreal, Eder;Yauli, Synthia;Salazar, Carlos;Yang, Seok-Jun;Ortega, Moises;Zorrilla, Braulio
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.71-77
    • /
    • 2019
  • New geochronological data of U-Pb, Re-Os and the lead isotope analysis of the Cu-Mo-Au mineral deposits are reported in the Trapiche and Constancia around Apurimac province, southeastern part of Peru. The measured ages were the first regional pulse of previously reported mineralization age between 28 and 33 Ma. The lead isotopic results indicate two sources of mineralization. The first source is thought to be derived from the upper crust and the second one is thought to be derived from a mixture of the upper crust and the lower crust.