• Title/Summary/Keyword: Cu gate capacitors

Search Result 4, Processing Time 0.027 seconds

A Comparative Study on Cu Drift Diffusion of Low-k Dielectrics and Thermal Oxide by use of BTS Technique (BTS 방법을 사용한 Low-K 유전체 물질들과 산화막의 Cu 드리프트 확산에 대한 비교 연구)

  • Chu, Soon-Nam;Kwon, Jung-Youl;Kim, Jang-Won;Park, Jung-Cheul;Lee, Heon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.2
    • /
    • pp.106-112
    • /
    • 2007
  • Advanced back-end processing requires the integration of low-k dielectrics and Cu. However, in the presence of an electric field and a temperature, positive Cu ions may drift rapidly through dielectric and causing reliability problems. Therefore, in this paper, Cu+ drift diffusion in two low-k materials and silicon oxide is evaluated. The drift diffusion is investigated by measuring shifts in the flat band voltage of capacitance-voltage measurements on Cu gate capacitors after bias thermal stressing. The Cu+ drift late in $SiO_{x}C_{y}\;(2.85{\pm}0.03)$ and Polyimide(2.7${\leq}k{\leq}3.0$) is Considerably lower than in thermal oxide.

Characterization of low-k dielectric SiOCH film deposited by PECVD for interlayer dielectric (PEDCVD로 증착된 ILD용 저유전 상수 SiOCH 필름의 특성)

  • Choi, Yong-Ho;Kim, Jee-Gyun;Lee, Heon-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.144-147
    • /
    • 2003
  • Cu+ ions drift diffusion in formal oxide film and SiOCH film for interlayer dielectric is evaluated. The diffusion is investigated by measuring shift in the flatband voltage of capacitance/voltage measurements on Cu gate capacitors after bias temperature stressing. At a field of 0.2MV/cm and temperature $200^{\circ}C,\;300^{\circ}C,\;400^{\circ}C,\;500^{\circ}C$ for 10min, 30min, 60min. The Cu+ ions drift rate of $SiOCH(k=2.85{\pm}0.03)$ film is considerable lower than termal oxide. As a result of the experiment, SiOCH film is higher than Thermal oxide film for Cu+ drift diffusion resistance. The important conclusion is that SiOCH film will solve a causing reliability problems aganist Cu+ drift diffuion in dielectric materials.

  • PDF

Use of a capacitance voltage technique to study copper drift diffusion in low-k polyimide (C-V Technique을 이용한 low-k polyimide로의 구리의 drift diffusion 연구)

  • Choi, Yong-Ho;Lee, Heon-Yong;Kim, Jee-Gyun;Kim, Jung-Woo;Kim, Yoo-Kyuong;Park, Jin-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.137-140
    • /
    • 2003
  • Cu+ ions drift diffusion in different dielectric materials is evaluated. The diffusion is investigated by measuring shift in the flatband voltage of capacitance/voltage measurements on Cu gate capacitors after bias temperature stressing. At a field of 1.lMV/cm and temperature $200^{\circ}C$, $250^{\circ}C$, $300^{\circ}C$ for 1H, 2H, 5H. The Cu+ ions drift rate of polyimide$(2.8{\leq}k{\leq}3.2)$ is considerably lower than thermal oxide. Also Cu+ drift rate of polyimide is similar to PECVD oxide. But, polyimide film is even more resistant to Cu drift diffusion and thermal effect than Thermal oxide, PECVD oxide: This results got a comparative reference. The important conclusion is that polyimide film is strongly dielectric material by thermal effect and Cu drift diffusion.

  • PDF

Ru and $RuO_2$ Thin Films Grown by Atomic Layer Deposition

  • Shin, Woong-Chul;Choi, Kyu-Jeong;Jung, Hyun-June;Yoon, Soon-Gil;Kim, Soo-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.149-149
    • /
    • 2008
  • Metal-Insulator-Metal(MIM) capacitors have been studied extensively for next generation of high-density dynamic random access memory (DRAM) devices. Of several candidates for metal electrodes, Ru or its conducting oxide $RuO_2$ is the most promising material due to process maturity, feasibility, and reliability. ALD can be used to form the Ru and RuO2 electrode because of its inherent ability to achieve high level of conformality and step coverage. Moreover, it enables precise control of film thickness at atomic dimensions as a result of self-limited surface reactions. Recently, ALD processes for Ru and $RuO_2$, including plasma-enhanced ALD, have been studied for various semiconductor applications, such as gate metal electrodes, Cu interconnections, and capacitor electrodes. We investigated Ru/$RuO_2$ thin films by thermal ALD with various deposition parameters such as deposition temperature, oxygen flow rate, and source pulse time. Ru and $RuO_2$ thin films were grown by ALD(Lucida D150, NCD Co.) using RuDi as precursor and O2 gas as a reactant at $200\sim350^{\circ}C$.

  • PDF