• Title/Summary/Keyword: Cu gap-filling

Search Result 12, Processing Time 0.031 seconds

The effect of plamsa treatment on superconformal copper gap-fill

  • Mun, Hak-Gi;Kim, Seon-Il;Park, Yeong-Rok;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.249-249
    • /
    • 2010
  • The effect of forming a passivation layer was investigated in superconformal Cu gap-filling of the nano-scale trench with atomic-layer deposited (ALD)-Ru glue layer. It was discovered that the nucleation and growth of Cu during metal-organic chemical vapor deposition (MOCVD) were affected by hydrogen plasma treatments. Specifically, as the plasma pretreatment time increased, Cu nucleation was suppressed proportionally. XPS and Thermal Desorption Spectroscopy indicated that hydrogen atoms passivate the Ru surface, which leads to suppression of Cu nucleation owing to prevention of adsorption of Cu precursor molecules. For gap-fill property, sub 60-nm ALD Ru trenches without the plasma pretreatment was blocked by overgrown Cu after the Cu deposition. With the plasma pretreatment, superconformal gap filling of the nano-scale trenches was achieved due to the suppression of Cu nucleation near the entrances of the trenches. Even the plasma pretreatment with bottom bias leads to the superconformal gap-filling.

  • PDF

Filling of Cu-Al Alloy Into Nanoscale Trench with High Aspect Ratio by Cyclic Metal Organic Chemical Vapor Deposition

  • Moon, H.K.;Lee, S.J.;Lee, J.H.;Yoon, J.;Kim, H.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.370-370
    • /
    • 2012
  • Feature size of Cu interconnects keep shrinking into several tens of nanometer level. For this reason, the Cu interconnects face challenging issues such as increase of electro-migration, line-width dependent electrical resistivity increase, and gap-filling difficulty in high aspect ratio structures. As the thickness of the Cu film decreases below 30 nm, the electrical resistivity is not any more constant, but rather exponential. Research on alloying with other elements have been started to inhibit such escalation in the electrical resistivity. A faint trace of Al added in Cu film by sputtering was reported to contribute to suppression of the increase of the electrical resistivity. From an industrial point of view, we introduced cyclic metal organic chemical vapor deposition (MOCVD) in order to control Al concentration in the Cu film more easily by controlling the delivery time ratio of Cu and Al precursors. The amount of alloying element could be lowered at level of below 1 at%. Process of the alloy formation was applied into gap-filling to evaluate the performance of the gap-filling. Voidless gap-filling even into high aspect ratio trenches was achieved. In-depth analysis will be discussed in detail.

  • PDF

Superconformal gap-filling of nano trenches by metalorganic chemical vapor deposition (MOCVD) with hydrogen plasma treatment

  • Moon, H.K.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.246-246
    • /
    • 2010
  • As the trench width in the interconnect technology decreases down to nano-scale below 50 nm, superconformal gap-filling process of Cu becomes very critical for Cu interconnect. Obtaining superconfomral gap-filling of Cu in the nano-scale trench or via hole using MOCVD is essential to control nucleation and growth of Cu. Therefore, nucleation of Cu must be suppressed near the entrance surface of the trench while Cu layer nucleates and grows at the bottom of the trench. In this study, suppression of Cu nucleation was achieved by treating the Ru barrier metal surface with capacitively coupled hydrogen plasma. Effect of hydrogen plasma pretreatment on Cu nucleation was investigated during MOCVD on atomic-layer deposited (ALD)-Ru barrier surface. It was found that the nucleation and growth of Cu was affected by hydrogen plasma treatment condition. In particular, as the plasma pretreatment time and electrode power increased, Cu nucleation was inhibited. Experimental data suggests that hydrogen atoms from the plasma was implanted onto the Ru surface, which resulted in suppression of Cu nucleation owing to prevention of adsorption of Cu precursor molecules. Due to the hydrogen plasma treatment of the trench on Ru barrier surface, the suppression of Cu nucleation near the entrance of the trenches was achieved and then led to the superconformal gap filling of the nano-scale trenches. In the case for without hydrogen plasma treatments, however, over-grown Cu covered the whole entrance of nano-scale trenches. Detailed mechanism of nucleation suppression and resulting in nano-scale superconformal gap-filling of Cu will be discussed in detail.

  • PDF

Effect of Plasma Pretreatment on Superconformal Cu Alloy Gap-Filling of Nano-scale Trenches

  • Mun, Hak-Gi;Lee, Jeong-Hun;Lee, Su-Jin;Yun, Jae-Hong;Kim, Hyeong-Jun;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.53-53
    • /
    • 2011
  • As the dimension of Cu interconnects has continued to reduce, its resistivity is expected to increase at the nanoscale due to increased surface and grain boundary scattering of electrons. To suppress increase of the resistivity in nanoscale interconnects, alloying Cu with other metal elements such as Al, Mn, and Ag is being considered to increase the mean free path of the drifting electrons. The formation of Al alloy with a slight amount of Cu broadly studied in the past. The study of Cu alloy including a very small Al fraction, by contrast, recently began. The formation of Cu-Al alloy is limited in wet chemical bath and was mainly conducted for fundamental studies by sputtering or evaporation system. However, these deposition methods have a limitation in production environment due to poor step coverage in nanoscale Cu metallization. In this work, gap-filling of Cu-Al alloy was conducted by cyclic MOCVD (metal organic chemical vapor deposition), followed by thermal annealing for alloying, which prevented an unwanted chemical reaction between Cu and Al precursors. To achieve filling the Cu-Al alloy into sub-100nm trench without overhang and void formation, furthermore, hydrogen plasma pretreatment of the trench pattern with Ru barrier layer was conducted in order to suppress of Cu nucleation and growth near the entrance area of the nano-scale trench by minimizing adsorption of metal precursors. As a result, superconformal gap-fill of Cu-Al alloy could be achieved successfully in the high aspect ration nanoscale trenches. Examined morphology, microstructure, chemical composition, and electrical properties of superfilled Cu-Al alloy will be discussed in detail.

  • PDF

Electro-chemical Mechanical deposition for the planarization of Cu film (Cu 배선의 평탄화를 위한 ECMD에 관한 연구)

  • Jeong, Suk-Hoon;Seo, Heon-Duk;Park, Boum-Young;Lee, Hyun-Seop;Jung, Jae-Woo;Park, Jae-Hong;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.649-650
    • /
    • 2005
  • 반도체는 고집적화, 고속도화, 저전력화를 목적으로 발전하고 있다. 이를 위하여 design rule의 감소, 새로운 물질과 프로세스의 적용 등 많은 연구가 이루어지고 있으며, RC delay time을 줄이기 위한 Cu 와 저유전율 재료의 적용이 그 대표적인 예라 할 수 있다. Cu 배선은 기존의 Al 배선에 비하여 높은 전자이동 (electro-migration)과 응력 이동 (stress-migration) 저항을 가짐으로써 전기적인 성능 (electrical performance) 에서 이점을 가지고 있다. 반도체에서의 Cu 배선 구조는 평탄화된 표면 및 배선들 사이에서의 좋은 전기적인 절연성을 가져야 하며, 이는 디싱(dishing)과 에로젼(erosion)의 중요한 인자가 된다. 기존의 평탄화 공정인 Cu CMP(Chemical Mechanical Polishing)에 있어서 이러한 디싱, 에로전과 같은 결함은 선결되어져야 할 문제로 인식되고 있다. 따라서 본 연구에서는 이러한 결합들을 감소시키기 위한 새로운 평탄화 방법으로 Cu gap-filling 을 하는 동시에 평탄화된 표면을 이루는 ECMD(Electro-Chemical Mechanical Deposition) 공정의 전기적 기계적 특성을 파악하였다.

  • PDF

Electronic structure of potassium-doped copper phthalocyanine studied by photoemission spectroscopy and density functional calculations

  • Im, Yeong-Ji;Kim, Jong-Hun;Ji, Dong-Hyeon;Jo, Sang-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.142.2-142.2
    • /
    • 2016
  • The metal intercalation to an organic semiconductor is of importance since the charge transfer between a metal and an organic semiconductor can induce the highly enhanced conductivity for achieving efficient organic electronic devices. In this regard, the changes of the electronic structure of copper phthalocyanine (CuPc) caused by the intercalation of potassium are studied by ultraviolet photoemission spectroscopy (UPS) and density functional theory (DFT) calculations. Potassium intercalation leads to the appearance of an intercalation-induced peak between the highest molecular occupied orbital (HOMO) and the lowest molecular unoccupied orbital (LUMO) in the valence-band spectra obtained using UPS. The DFT calculations show that the new gap state is attributed to filling the LUMO+1, unlike a common belief of filling the LUMO. However, the LUMO+1 is not conductive because the ${\pi}$-conjugated macrocyclic isoindole rings on the molecule do not make a contribution to the LUMO+1. This is the origin of a metal-insulator transition through heavily potassium doped CuPc.

  • PDF

Pairing symmetry analyzed by a peak shape of density of states in an Bi2Sr2CaCu2O8+x superconductor

  • Kim, Hyun-Tak;Kang, Kwang-Yong
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.30-34
    • /
    • 2003
  • For an inhomogeneous superconductor, we reveal a relation of an observed superconducting gap, $\Delta$$_{obs}$ and the intrinsic true gap, $\Delta$$_{i}$, $\Delta$$_{obs}$(equation omitted) where band filling, 0<$\rho$<$\leq$1. $\Delta$$_{obs}$ is the effect of measurement when 0<$\rho$<1. The true gap is observed only when $\rho$=1. Parring symmetry analyzed by a coherence-peak shape of density of states, observed in B $i_2$S $r_2$CaC $u_2$ $O_{8}$$\chi$ superconductors, is s- wave.X> $O_{8}$$\chi$ superconductors, is s- wave. wave.

  • PDF

Alloy Design and Powder Manufacturing of Al-Cu-Si alloy for Low-Temperature Aluminum Brazing (저온 알루미늄 브레이징용 Al-Cu-Si-Sn 합금 설계 및 분말 제조)

  • Heeyeon Kim;Chun Woong Park;Won Hee Lee;Young Do Kim
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.339-345
    • /
    • 2023
  • This study investigates the melting point and brazing properties of the aluminum (Al)-copper (Cu)-silicon (Si)-tin (Sn) alloy fabricated for low-temperature brazing based on the alloy design. Specifically, the Al-20Cu-10Si-Sn alloy is examined and confirmed to possess a melting point of approximately 520℃. Analysis of the melting point of the alloy based on composition reveals that the melting temperature tends to decrease with increasing Cu and Si content, along with a corresponding decrease as the Sn content rises. This study verifies that the Al-20Cu-10Si-5Sn alloy exhibits high liquidity and favorable mechanical properties for brazing through the joint gap filling test and Vickers hardness measurements. Additionally, a powder fabricated using the Al-20Cu-10Si-5Sn alloy demonstrates a melting point of around 515℃ following melting point analysis. Consequently, it is deemed highly suitable for use as a low-temperature Al brazing material.

Mechanism Study of Flowable Oxide Process for Sur-100nm Shallow Trench Isolation

  • Kim, Dae-Kyoung;Jang, Hae-Gyu;Lee, Hun;In, Ki-Chul;Choi, Doo-Hwan;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.68-68
    • /
    • 2011
  • As feature size is smaller, new technology are needed in semiconductor factory such as gap-fill technology for sub 100nm, development of ALD equipment for Cu barrier/seed, oxide trench etcher technology for 25 nm and beyond, development of high throughput Cu CMP equipment for 30nm and development of poly etcher for 25 nm and so on. We are focus on gap-fill technology for sub-30nm. There are many problems, which are leaning, over-hang, void, micro-pore, delaminate, thickness limitation, squeeze-in, squeeze-out and thinning phenomenon in sub-30 nm gap fill. New gap-fill processes, which are viscous oxide-SOD (spin on dielectric), O3-TEOS, NF3 Based HDP and Flowable oxide have been attempting to overcome these problems. Some groups investigated SOD process. Because gap-fill performance of SOD is best and process parameter is simple. Nevertheless these advantages, SOD processes have some problems. First, material cost is high. Second, density of SOD is too low. Therefore annealing and curing process certainly necessary to get hard density film. On the other hand, film density by Flowable oxide process is higher than film density by SOD process. Therefore, we are focus on Flowable oxide. In this work, dielectric film were deposited by PECVD with TSA(Trisilylamine - N(SiH3)3) and NH3. To get flow-ability, the effect of plasma treatment was investigated as function of O2 plasma power. QMS (quadruple mass spectrometry) and FTIR was used to analysis mechanism. Gap-filling performance and flow ability was confirmed by various patterns.

  • PDF

Thermal Management on 3D Stacked IC (3차원 적층 반도체에서의 열관리)

  • Kim, Sungdong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.5-9
    • /
    • 2015
  • Thermal management becomes serious in 3D stacked IC because of higher heat flux, increased power generation, extreme hot spot, etc. In this paper, we reviewed the recent developments of thermal management for 3D stacked IC which is a promising candidate to keep Moore's law continue. According to experimental and numerical simulation results, Cu TSV affected heat dissipation in a thin chip due to its high thermal conductivity and could be used as an efficient heat dissipation path. Other parameters like bumps, gap filling material also had effects on heat transfer between stacked ICs. Thermal aware circuit design was briefly discussed as well.