• 제목/요약/키워드: Cu electroless plating

Search Result 126, Processing Time 0.033 seconds

Thermal Properties according to Content and Alignment of Carbon Fiber in Cu Matrix Composite Reinforced with Chopped Carbon Fiber (탄소 단섬유가 첨가된 Cu기지 복합재료의 섬유 분율 및 배열에 따른 열적 특성)

  • Kim, Minkyoung;Han, Jun Hyun
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.626-634
    • /
    • 2021
  • Cu matrix composites reinforced with chopped carbon fiber (CF), which is cost effective and can be well dispersed, are fabricated using electroless plating and hot pressing, and the effects of content and alignment of CF on the thermal properties of CF/Cu composites are studied. Thermal conductivity of CF/Cu composite increases with CF content in the in-plane direction, but it decreases above 10% CF; this is due to reduction of thermal diffusivity related with phonon scattering by agglomeration of CF. The coefficient of thermal expansion decreases in the in-plane direction and increases in the through-plane direction as the CF content increases. This is because the coefficient of thermal expansion of the long axis of CF is smaller than that of the Cu matrix, and the coefficient of thermal expansion of its short axis is larger than that of the Cu matrix. The thermal conductivity is greatly influenced by the agglomeration of CF in the CF/Cu composite, whereas the coefficient of thermal expansion is more influenced by the alignment of CF than the aggregation of CF.

Formation of Ni-W-P/Cu Electrodes for Silicon Solar Cells by Electroless Deposition (무전해 도금을 이용한 Si 태양전지 Ni-W-P/Cu 전극 형성)

  • Kim, Eun Ju;Kim, Kwang-Ho;Lee, Duk Haeng;Jung, Woon Suk;Lim, Jae-Hong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.54-61
    • /
    • 2016
  • Screen printing of commercially available Ag paste is the most widely used method for the front side metallization of Si solar cells. However, the metallization using Ag paste is expensive and needs high temperature annealing for reliable contact. Among many metallization schemes, Ni/Cu/Sn plating is one of the most promising methods due to low contact resistance and mass production, resulting in high efficiency and low production cost. Ni layer serves as a barrier which would prevent copper atoms from diffusion into the silicon substrate. However, Ni based schemes by electroless deposition usually have low thermal stability, and require high annealing process due to phosphorus content in the Ni based films. These problems can be resolved by adding W element in Ni-based film. In this study, Ni-W-P alloys were formed by electroless plating and properties of it such as sheet resistance, resistivity, specific contact resistivity, crystallinity, and morphology were investigated before and after annealing process by means of transmission line method (TLM), 4-point probe, X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM).

The Research of Ni/Cu/Ag Contact Solar Cells for Low Cost & High Efficiency in Crystalline Solar Cells (결정질 실리콘 태양전지의 저가 고 효율화를 위한 Ni/Cu/Ag 전극 태양전지)

  • Cho, Kyeong-Yeon;Lee, Ji-Hun;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.214-219
    • /
    • 2009
  • In high-efficiency crystalline silicon solar cells, If high-efficiency solar cells are to be commercialized. It is need to develop superior contact formation method and material that can be inexpensive and simple without degradation of the solar cells ability. For reason of plated metallic contact is not only high metallic purity but also inexpensive manufacture. It is available to apply mass production. Especially, Nickel, Copper and Silver are applied widely in various electronic manufactures as easily formation is available by plating. The metallic contact system of silicon solar cell must have several properties, such as low contact resistance, easy application and good adhesion. Ni is shown to be a suitable barrier to Cu diffusion as well as desirable contact metal to silicon. Nickel monosilicide(NiSi) has been suggested as a suitable silicide due to its lower resistivity, lower sintering temperature and lower layer stress than $TiSi_2$. Copper and Silver can be plated by electro & light-induced plating method. Light-induced plating makes use the photovoltaic effect of solar cell to deposite the metal on the front contact. The cell is immersed into the electrolytic plating bath and irradiated at the front side by light source, which leads to a current density in the front side grid. Electroless plated Ni/ Electro&light-induced plated Cu/ Light-induced plated Ag contact solar cells result in an energy conversion efficiency of 14.68 % on $0.2{\sim}0.6{\Omega}{\cdot}cm,\;20{\times}20mm^2$, CZ(Czochralski) wafer.

  • PDF

Improvement of the Throwing Power (TP) and Thickness Uniformity in the Electroless Copper Plating (무전해 동도금 Throwing Power (TP) 및 두께 편차 개선)

  • Seo, Jung-Wook;Lee, Jin-Uk;Won, Yong-Sun
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • The process optimization was carried out to improve the throwing power (TP) and the thickness uniformity of the electroless copper (Cu) plating, which plays a seed layer for the subsequent electroplating. The DOE (design of experiment) was employed to screen key factors out of all available operation parameters to influence the TP and thickness uniformity the most. It turned out that higher Cu ion concentration and lower plating temperature are advantageous to accomplish uniform via filling and they are accounted for based on the surface reactivity. To visualize what occurred experimentally and evaluate the phenomena qualitatively, the kinetic Monte Carlo (MC) simulation was introduced. The combination of neatly designed experiments by DOE and supporting theoretical simulation is believed to be inspiring in solving similar kinds of problems in the relevant field.

Adhesion Improvement of Electroless Copper Plated Layer on PET Film - Effect of Pretreatment Conditions - (무전해 동도금 피막의 접착력 향상에 관한 연구 - PET 필름의 전처리 조건의 영향 -)

  • 오경화;김동준;김성훈
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.302-310
    • /
    • 2001
  • Cu/PET film composites were prepared by electroless copper plating method. In order to improve adhesion between electroless Cu plated layer and polyester (PET) film, the effect of pretreatment conditions such as etching method and mixed catalyst composition, and accelerator was investigated. Compared to NaOH etching medium, PET film was more finely etched by HCl solution, resulting in an improvement in adhesion between Cu layer and PET film. However, there were no significant differences in electromagnetic interference shielding effectiveness as a function of etching medium. The surface morphology of Cu plated PET film revealed that Pd/Sn colloidal particles became more evenly distributed in the smaller size by increasing the molar ratio of PdCl$_2$ : SnCl$_2$ from 1 : 4 to 1 : 16. With increasing the molar ratio of mixed catalyst, the adhesion and the shielding effectiveness of Cu plated PET film were increased. Furthermore, HCl was turned out to be a better accelerator than NaOH in order to enhance the activity of the mixed PdCl$_2$/SnCl$_2$ catalyst, which facilitated the formation of more uniform copper deposit on the PET film.

  • PDF

Effects of Ni-P Bath on the Brittle Fracture of Sn-Ag-Cu Solder/ENEPIG Solder Joint (ENEPIG/Sn-Ag-Cu 솔더 접합부의 취성 파괴에 미치는 무전해 니켈 도금액의 영향)

  • Kim, Kyoung-Ho;Seo, Wonil;Kwon, Sang-Hyun;Kim, Jun-Ki;Yoon, Jeong-Won;Yoo, Sehoon
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.1-6
    • /
    • 2017
  • The effect of metal turnover (MTO) of electroless Ni plating bath on the brittle fracture behavior of electroless nickel electroless palladium immersion gold (ENEPIG)/Sn-3.0wt%Ag-0.5wt%Cu(SAC305) solder joint was evaluated in this study. The MTOs of the electroless Ni for the ENEPIG surface finish were 0 and 3. As the MTO increased, the interfacial IMC thickness increased. The brittle fracture behavior of the ENEPIG/SAC305 solder joint was evaluated with high speed shear (HSS) test. The HSS strength decreased with increasing the MTO of the electroless Ni bath. The brittle fracture increased with increasing the shear speed of the HSS test. The percentage of the brittle fracture for the 3 MTO sample was much higher than that for the 0 MTO sample.

Synthesis of Ag-Cu Composite Powders for Electronic Materials by Electroless Plating Method (무전해 도금법을 이용한 전자소재용 은-구리 복합분말의 제조)

  • Yoon, C.H.;Ahn, J.G.;Kim, D.J.;Sohn, J.S.;Park, J.S.;Ahn, Y.G.
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.221-226
    • /
    • 2008
  • Silver coated copper composite powders were prepared by electroless plating method by controlling the activation and deposition process variables such as feeding rate of silver ions solution, concentration of reductant and molar ratio of activation solution $(NH_4OH/(NH_4)_2SO_4)$ at room temperature. The characteristics of the product were verified by using a scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic absorption (A.A.). It is noted that completely cleansing the copper oxide layers and protecting the copper particles surface from hydrolysis were important to obtain high quality Ag-Cu composite powders. The optimum conditions of Ag-Cu composite powder synthesis were $NH_4OH/(NH_4)_2SO_4$ molar ratio 4, concentration of reductant 15g/l and feeding rate of silver ions solution 2 ml/min.

Effects of Bath Compositions and Plating Conditions on Electroless Copper Plating Rate with Sodium Hypophosphite as Reducing Agent (환원제로 차아인산나트륨을 사용한 무전해 동도금속도에 미치는 도금액 조성과 도금조건의 영향)

  • Oh, I.S;Park, J.D.;Bai, Y.H.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.71-78
    • /
    • 2001
  • Using sodium hypophosphite as reducing agent, bath composition and plating condition of electroless copper plating on plating rate have been studied. The followings were determined as optimum, bath composition; $CuSO_4\;0.025M,\;NiSO_4\;0.002M,\;NaH_2PO_2\;0.4M$, sodium citrate 0.06M, $H_3BO_3$ 0.6M, thiourea or 2-MBT $0.2mg/{\ell}$, and operation conditions; pH $9{\sim}10$ at bath temperature rage of $60{\sim}70^{\circ}C$. A small amount of nickel ion($Ni^{2+}/Cu^{2+}$=0.002/0.025) to the hypophosphite reduced solution promotes autocatalysis and continuous plating. An additive such as thiourea or 2-MBT of a small amount($0.2mg/{\ell}$) can be used to stabilize the solution without changing plating rate much. The attivation energy between $20^{\circ}C\;and\;70^{\circ}C$ were calculated to be 11.3kcal/mol for deposition weight. Plating reaction had been ceased by the adjustment of pH above 13, temperature higher than $90^{\circ}C\;and\;under\;20^{\circ}C$. Deposited surface became worse in the case of increment of bath temperature above $80^{\circ}C$.

  • PDF

Polyethylene Film Surface Metallization Modified by Radiation Grafting of N-vinyl Pyrollidone

  • Aal, A.A.;Khutoryanskiy, V.V.;Nurkeeva, Z.S.;Mun, G.A.;Soh, D.W.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.110-112
    • /
    • 2004
  • Poyethylene films can be modified by radiation grafting of N-vinyl pyrollidone using y-radiation. FTIR spectra were used to confirm the modification of PE films. The modified films were activated by two-step and one step methods for electroless Cu plating. Morphology of metallized films has been investigated. Electroless Cu plating onto the modified films depends mainly on the grafting degree and activation type. The conductivity of the metallized films has been investigated.

  • PDF