• 제목/요약/키워드: Cu diffusion

검색결과 443건 처리시간 0.025초

INTERFACIAL REACTIONS BETWEEN SN-58MASS%BI EUTECTIC SOLDER AND (CU, ELECTROLESS NI-P/CU)SUBSTRATE

  • Yoon, Jeong-Won;Lee, hang-Bae;Park, Guang-Jin;Shin, Young-Eui;Jung, Seung-Boo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.487-492
    • /
    • 2002
  • The growth kinetics of intermetallic compound layers formed between eutectic Sn-58Bi solder and (Cu, electroless Ni-P/Cu) substrate were investigated at temperature between 70 and 120 C for 1 to 60 days. The layer growth of intermetallic compound in the couple of the Sn-58Bi/Cu and Sn-58Bi/electroless Ni-P system satisfied the parabolic law at given temperature range. As a whole, because the values of time exponent (n) have approximately 0.5, the layer growth of the intermetallic compound was mainly controlled by volume diffusion over the temperature range studied. The apparent activation energies of Cu$_{6}$Sn$_{5}$ and Ni$_3$Sn$_4$ intermetallic compound in the couple of the Sn-58Bi/Cu and Sn-58Bi/electroless Ni-P were 127.9 and 81.6 kJ/mol, respectively.ely.

  • PDF

알루미나(Al$_2$O$_3$) 세라믹 표면의 강메탈라이징법에 관한 연구 (A Study on the Copper Metallizing Method of $Al_2$O$_3$ Ceramic Surface)

  • 최영국;김정관
    • Journal of Welding and Joining
    • /
    • 제13권3호
    • /
    • pp.55-64
    • /
    • 1995
  • Metallizing method on ceramic surface is one of the compositing technology of ceramics and metal. The purpose of this study is to make HIC (Hybrid Intergrated Circuit) with copper metallizing method of which copper layer is formed on ceramic substrate by firing in atmosphere in lieu of conventional hybrid microcircuit systems based on noble metal. Metallizing pastes were made from various copper compounds such as Cu$_{2}$O, CuO, Cu, CuS and kaolin. And the screen printing method was used. The characteristics of metallized copper layers were analyzed through the measurement of sheet resistance, SEM, and EDZX. The results obtainted are summarized as follows; 1. The copper metallizing layers on ceramic surface can be formed by firing in air. 2. The metallized layer using Cu$_{2}$O paste showed the smallest sheet resistance among a group of copper chemical compounds. And optimum metallizing conditions are 15 minutes of firing time, 1000.deg.C of firig temperature, and 3 minutes of deoxidation time. 3. The results of EDAX analysis showed mutual diffusion of Cu and Al. 4. The kaolin plays a important role of deepening the penetration of Cu to $Al_{2}$O$_{3}$ ceramics. But if the kaolin content is too much, sheet resistance increases and copper metallizing layer becomes brittle.

  • PDF

Sn-Zn 무연솔더를 사용한 BGA패키지의 계면반응 및 신뢰성 평가 (Reliability Investigation and Interfacial Reaction of BGA packages Using the Pb-free Sn-Zn Solder)

  • 전현석;윤정원;정승부
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.25-27
    • /
    • 2005
  • Sn-9Zn solder balls were bonded to Cu and ENIG (Electroless Nickel/Immersion Gold) pads, and the effect of aging on their joint reliability was investigated. The interfacial products were different from the general reaction layer formed in a Sn-base solder. The intermetallic compounds formed in the solder/Cu joint were $Cu_{5}Zn_{8}$ and $Cu_{6}Sn_{5}$. After aging treatment, voids formed irregularly at the bottom side of the solder because of Sn diffusion into the $Cu_{5}Zn_{8}$ IMC. In the case of the solder/ENIG joint, $AuZn_{3}$ IMCs were formed at the interface. In the case of the Sn-9Zn/ENIG, the shear strength remained nearly constant in spite of aging for 1000 hours at $150^{\circ}C$. On the other hand, in the case of the Sn-9Zn/Cu, the shear strength significantly decreased after aging at $150^{\circ}C$ for 100hours and then remained constant by further prolonged aging. Therefore, the protective plating layer such as ENIG must be used to ensure the mechanical reliability of the Sn-9Zn/Cu joint.

  • PDF

Ni/Cu 금속전극 태양전지의 Ni electroless plating에 관한 연구 (The Research of Ni Electroless Plating for Ni/Cu Front Metal Solar Cells)

  • 이재두;김민정;권혁용;이수홍
    • 한국전기전자재료학회논문지
    • /
    • 제24권4호
    • /
    • pp.328-332
    • /
    • 2011
  • The formation of front metal contact silicon solar cells is required for low cost, low contact resistance to silicon surface. One of the front metal contacts is Ni/Cu plating that it is available to simply and inexpensive production to apply mass production. Ni is shown to be a suitable barrier to Cu diffusion into the silicon. The process of Ni electroless plating on front silicon surface is performed using a chemical bath. Additives and buffer agents such as ammonium chloride is added to maintain the stability and pH control of the bath. Ni deposition rate is found to vary with temperature, time, utilization of bath. The experimental result shown that Ni layer by SEM (scanning electron microscopy) and EDX analysis. Finally, plated Ni/Cu contact solar cell result in an efficiency of 17.69% on $2{\times}2\;cm^2$, Cz wafer.

FE-SEM Image Analysis of Junction Interface of Cu Direct Bonding for Semiconductor 3D Chip Stacking

  • Byun, Jaeduk;Hyun, June Won
    • 한국표면공학회지
    • /
    • 제54권5호
    • /
    • pp.207-212
    • /
    • 2021
  • The mechanical and electrical characteristics can be improved in 3D stacked IC technology which can accomplish the ultra-high integration by stacking more semiconductor chips within the limited package area through the Cu direct bonding method minimizing the performance degradation to the bonding surface to the inorganic compound or the oxide film etc. The surface was treated in a ultrasonic washer using a diamond abrasive to remove other component substances from the prepared cast plate substrate surface. FE-SEM was used to analyze the bonding characteristics of the bonded copper substrates, and the cross section of the bonded Cu conjugates at the sintering junction temperature of 100 ℃, 150 ℃, 200 ℃, 350 ℃ and the pressure of 2303 N/cm2 and 3087 N/cm2. At 2303 N/cm2, the good bonding of copper substrate was confirmed at 350 ℃, and at the increased pressure of 3087 N/cm2, the bonding condition of Cu was confirmed at low temperature junction temperature of 200 ℃. However, the recrystallization of Cu particles was observed due to increased pressure of 3087 N/cm2 and diffusion of Cu atoms at high temperature of 350 ℃, which can lead to degradation in semiconductor manufacturing.

수소 정제용 팔라듐 합금 분리막 연구 (A Study on the Palladium Alloy Membrane for Hydrogen Separation)

  • 우병일;김동원
    • 한국표면공학회지
    • /
    • 제42권5호
    • /
    • pp.232-239
    • /
    • 2009
  • This study presented the effect of membrane thickness on hydrogen permeability. Microvoids on the surface of the membrane should not exist for the exact values of hydrogen permeability. Pd-Cu-Ni hydrogen alloy membranes were fabricated by Ni powder sintering, substrate plasma pretreatment, sputtering and Cu reflow process. And this leaded to void-free surface and dense film of Pd-Cu-Ni hydrogen alloy membrane. Hydrogen permeation test showed that hydrogen permeability increased from 2.7 to $15.2ml/cm^2{\cdot}min{\cdot}atm^{0.5}$ as membrane thickness decreased from 12 to $4{\mu}m$. This represented the similar trend as a hydrogen permeability of pure palladium membrane based on solution-diffusion mechanism.

알루미나/Ag-Cu-Zr-Sn 브레이징 합금계면의 미세조직 (Evolution of Interfacial Microstructure in Alumina and Ag-Cu-Zr-Sn Brazing Alloy)

  • 김종헌;유연철
    • 소성∙가공
    • /
    • 제7권5호
    • /
    • pp.481-488
    • /
    • 1998
  • The active metal brazing was applied to bond Alumina and Ni-Cr steel by Ag-Cu-Zr-Sn alloy and the interfacial microstructure and reaction mechanism were investigated. Polycrystalline monoclinic $ZrO_2$ with a very fine grain of 100-150 nm formed at the alumina grain boundary contacted with Zr segregation layer at the interface. The $ZrO_2$ layer containing the inclusions and cracks were developed at the boundary of inclusion/$ZrO_2$ due to the difference in specific volume. The development of $ZrO_2$ at the interface was successfully explained by the preferential penetration of $ZrO_2$ at the interface was successfully explained by the preferential penetration of Zr atoms a higher concentration of oxygen and a high diffusion rate of Al ions into molten brazing alloy.

  • PDF