• Title/Summary/Keyword: Cu contact

Search Result 406, Processing Time 0.026 seconds

Co Gas Sensing Property of ZnO/CuO Hetero-Contact Ceramics (ZnO와 CuO의 접촉형 세라믹스의 일산화탄소 가스 감응특성)

  • 전석택;최경만
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.7
    • /
    • pp.565-571
    • /
    • 1992
  • Gas sensing properties of P-N contact ceramics, composed of ZnO and CuO pairs sintered at different temperatures, were studied for 1% CO gas. Between 10$0^{\circ}C$ and 32$0^{\circ}C$ temperature range, it was observed that 2-probe current-voltage (I-V) characteristics, temperature and voltage dependence of sensivities were dependant largely upon ZnO samples. Pairs including a ZnO sample sintered at 110$0^{\circ}C$ showed maximum senitivity of 9 and 13 depending upon counterpart CuO samples, at 260~29$0^{\circ}C$. On the other hand, pairs including a ZnO samples sintered at 90$0^{\circ}C$ showed increasing sensitivity within in the measured temperature range and maximum sensitivities were about 4.

  • PDF

ENHANCEMENT OF PHOTOVOLTAIC PERFORMANCE IN COPPER PHTHALOCYNINE THICK FILM SOLAR CELLS

  • Ruiono, Yo Tomota;Momose, Yoshihiro;Takeuchi, Manabu
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.673-677
    • /
    • 1996
  • Copper phthalocyanine(CuPc) thick film solar cells were fabgricated byspin coating and their photovoltaic behavior was studied. Polyvinylidene fluoride (PVdF) was used for the binder. Aluminum and indium were employed as electrode metals to form Schottky contact to CuPc layer. The cells showed rectifying J-V characteristics in the dark and photovoltaic effect associated with white light irradiation. The photovoltaic performance of the cells strongly depended on contact metals, in which the formation of oxide layer between binder layer and electrode interface affected the solar cell. Influnce of the CuPc layer thickness, CuPc/PVdF ratio on the photovoltaic performance of the cells were also examined.

  • PDF

Magneto resistance in NiO/NiFe/Cu/NiFe spin-valve Sandwiches (NiO/NiFe/Cu/NiFe 스핀-밸브 샌드위치의 자기저항 특성)

  • 김재욱
    • Electrical & Electronic Materials
    • /
    • v.10 no.10
    • /
    • pp.1016-1021
    • /
    • 1997
  • Magneto resistance properties in spin-valve sandwiches with various thickness of nanmagnetic layer in contact with the ferromagnetic NiFe film were investigated. The NiFe layer in contact with the NiO film was pinned by strongly exchange-biased coupling and the free NiFe layer at the film surface induced a sharp change in the magnetoresistance at -5~15Oe due to small coercivity. The NiO/NiFe/Cu/NiFe film showed a magnetoresistance ratio in the range of 2.3~2.9% and a field sensitivity above 2.2%/Oe with various of nonmagnetic layer. The NiO/NiFe/Cu/NiFe film of the field sensitivity above 2.2%/Oe suggests stang possibility of magnetic sensor matter.

  • PDF

Electrical contact property and microstructure of Ni-P alloy added W-Cu contact materials (Ni-P합금 첨가한 W-Cu접점의 전기접점특성과 미세조직)

  • 김태형;배광욱;이재성
    • Electrical & Electronic Materials
    • /
    • v.3 no.4
    • /
    • pp.325-331
    • /
    • 1990
  • 본 연구는 텅스텐 소결에 저온 활성제로 작용하는 Ni-P 공정합금을 미량첨가하여 제조공정의 간단화를 통한 새로운 W-Cu계 전기접점제조를 목표로 하였다. 이를 위해 1회 용침공정을 통해 제조한 W(Ni-P)-Cu 합금에 대한 전기접점특성을 조사하여 접점의 미세구조 관점에서 논의하였다. Ni-P 합금첨가한 접점은 기존의 순수 W-Cu 합금에 비해 낮은 접촉저항 및 낮은 아크소모를 나타내는 우수한 접점성능을 보여주었다. 이것은 Ni-P합금이 Cu용침이 개시되기전 짧은 승온단계에서 분말간의 강한 결합과 Cu용침에 유리한 기공통로를 갖는 W 분말 골격체의 형성을 유도하기 때문인 것으로 판단된다.

  • PDF

Thermal Contact Resistance Measurement of Metal Interface at Cryogenic Temperature (극저온에서 금속표면의 열 접촉 저항 측정)

  • Kim, Myung Su;Choi, Yeon Suk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.1
    • /
    • pp.32-37
    • /
    • 2014
  • The thermal contact resistance (TCR) is one of the important resistance components in cryogenic systems. Cryogenic measurement devices using a cryocooler can be affected by TCR because the device has to consist of several metal components that are in contact with each other for heat transfer to the specimen without a cryogen. Therefore, accurate measurement and understanding of TCR is necessary for the design of cryogenic measurement devices using a cryocooler. The TCR occurs at the interface between metals and it can be affected by variable factors, such as the roughness of the metal surface, the contact area and the contact pressure. In this study, we designed a TCR measurement system at variable temperature using a cryocooler as a heat sink. Copper was selected as a specimen in the experiment because it is widely used as a heat transfer medium in cryogenic measurement devices. We measured the TCR between Cu and Cu for various temperatures and contact pressures. The effect of the interfacial materials on the TCR was also investigated.

Graphene Doping Effect of Thin Film and Contact Mechanisms (박막의 그래핀 도핑 효과와 접합 특성)

  • Oh, Teressa
    • Korean Journal of Materials Research
    • /
    • v.24 no.3
    • /
    • pp.140-144
    • /
    • 2014
  • The contact mechanism of devices is usually researched at electrode contacts. However, the contact between a dielectric and channel at the MOS structure is more important. The graphene was used as a channel material, and the thin film transistor with MOS structure was prepared to observe the contact mechanism. The graphene was obtained on Cu foil by the thermal decomposition method with $H_2$ and $CH_4$ mixed gases at an ambient annealing temperature of $1000^{\circ}C$ during the deposition for 30 min, and was then transferred onto a $SiO_2/Si$ substrate. The graphene was doped in a nitrogen acidic solution. The chemical properties of graphene were investigated to research the effect of nitric atoms doping. The sheet resistance of graphene decreased after nitrogen acidic doping, and the sheet resistance decreased with an increase in the doping times because of the increment of negative charge carriers. The nitric-atom-doped graphene showed the Ohmic contact at the curve of the drain current and drain voltage, in spite of the Schottky contact of grapnene without doping.

The Effects of Metal Structure on the Junction Stability of Sub-micron Contacts Using Selective CVD-W Plug (금속 구조 변화에 따른 선택 화학기상증착 W Plug의 접합 신뢰성 연구)

  • 최경근;김춘환;박흥락;고철기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.94-100
    • /
    • 1994
  • The junction failure mechanism of W plugs has not been fully understood while the selective W deposition has been widely used for plugging interconnection lines. In this paper, the thermal stability and junction failure mechanism of sub-micron contacts using selective CVD-W plugs were intensively studied with the metal lines of AISiCu, Ti/AISiCu and TiN/AISiCu. The experimental results showed that the contact chain resistance and leakage current in the AISiCu and Ti/AISiCu metallizations were significantly degraded after annealing. From the SEM analysis, it was found that the junction spiking, due to the Al atoms diffusion along the porous interface between selective CVD-W and contactside wall, caused the junction failure. In constast, there was no degradation of the contact resistance and junction leakage current in TiN/AISiCu metal structu-re. It is believed that the TiN barrier layer could prevent AI(Ti) atoms Fromdiffusing. Therefore, TiN barrier between W plug and Al should be used to impro-ve the thermal stability of sub-micron contacts using the selective CVD-W plugs.

  • PDF

Adhesive Properties of Epoxy Composite According to the Surface Treatment of Cu Substrate and Adhesion Promoter Content (구리기판의 표면처리 및 접착증진제 함량에 따른 에폭시 컴포지트의 접착특성)

  • Eun-jin Kim;Jung Soo Kim;Young-Wook Chang;Dong Hyun Kim
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.108-115
    • /
    • 2022
  • In this study, we synthesized poly(itaconic acid-co-acrylamide) (IAcAAM) used as a novel polymer adhesion promoter to improve the adhesion strength of surface-treated Cu lead frames and epoxy composites. IAcAAM comprising itaconic acid, acrylamide was prepared through radical aqueous polymerization. The chemical structure and properties of IAcAAM was analyzed by FT-IR, 1H-NMR, GPC, and DSC. The surface of the copper lead frame was treated with high temperature, alkali, and UV ozone to reduce the water contact angle and increase the surface energy. The adhesive strength of Cu lead frame and epoxy composite increased with the decrease of contact angle. The adhesive strength of Cu lead frame/epoxy composite increased with the addition of IAcAAM in epoxy composite. As silica content increased, the adhesive strength of Cu lead frame and epoxy composite tended to slightly decrease.